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[1] We apply the lattice-Boltzmann method to simulate fluid flow and dissolution and
precipitation in the reactive solid phase in a porous medium. Both convection and
diffusion as well as temporal geometrical changes in the pore space are taken into account.
The numerical results show that at high Peclet and Peclet-Damkohler numbers, a
wormhole is formed and permeability increases greatly because of the dissolution process.
At low Peclet and high Peclet-Damkohler numbers, reactions mainly occur at the inlet
boundary, resulting in the face dissolution and the slowest increase of the permeability in
the dissolution process. At moderate Peclet and Peclet-Damkohler numbers, reactions are
generally nonuniform, with more in the upstream and less in the downstream. At very
small Peclet-Damkohler number, dissolution or precipitation is highly uniform, and these
two processes can be approximately reversed by each other. These numerical examples
have not been yet confirmed by physical experimentation. Nevertheless, we believe that
these simulation results can serve to estimate the effects of dissolution and precipitation
during reactive fluid flow. INDEX TERMS: 1815 Hydrology: Erosion and sedimentation; 5104

Physical Properties of Rocks: Fracture and flow; 5114 Physical Properties of Rocks: Permeability and

porosity; KEYWORDS: dissolution/precipitation, Peclet number, Damkohler number, porous media, lattice-

Boltzmann method
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1. Introduction

[2] The coupled transport and reaction of fluids in porous
media or fractures plays a crucial role in a variety of scientific,
industrial, and engineering processes, such as stimulation of
petroleum reservoirs, environmental contaminant transport,
mineral mining, geologic sequestration of carbon dioxide,
chemical weathering, diagenesis, concrete degradation, bio-
remediation, and dissolution/formation of hydrates.
[3] These applications typically involve multiple pro-

cesses such as convection, diffusion, and reaction. Com-
plicating matters even more is the evolution of porous media
that results from dissolution/precipitation. Such evolution
may significantly and continuously modify the hydrologic

properties of the media. Changes in hydrologic properties
(e.g., porosity, fracture aperture, and tortuosity) result in
changes in permeability and effective mass diffusivity.
Therefore such changes are coupled with subsequent fluid
flow, solute transport, and surface reactions.
[4] Because of its importance, this problem has been

studied by various approaches: From semianalytical inves-
tigations [Dijk and Berkowitz, 1998], to experimental stud-
ies [Daccord, 1987], to numerical simulations [Salles et al.,
1993]; from solving macroscopic partial differential equa-
tions [Chadam et al., 1986; Ortoleva et al., 1987; Chen and
Ortoleva, 1990; Steefel and Lasaga, 1990, 1994; Aharonov
et al., 1995, 1997; Liu et al., 1997; Ormond and Ortoleva,
2000], to microscopic studies [Daccord, 1987; Wells et al.,
1991; Janecky et al., 1992; Kelemen et al., 1995; Salles et
al., 1993; Bekri et al., 1995, 1997; Dijk and Berkowitz,
1998], to analog network simulations [Hoefner and Fogler,
1988; Fredd and Fogler, 1998].
[5] At a Darcy scale and under the condition that the

dissolution process does not increase the porosity dramat-
ically, fingering, the formation of channels wherein the
dissolution is not complete, has been modeled using the
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Darcy equation in both homogeneous and heterogeneous
porous media [Chen and Ortoleva, 1990; Steefel and
Lasaga, 1990]. Wormholing, the formation of channels
wherein the matrix is completely removed through dissolu-
tion, has been achieved numerically using Brinkman’s
equation [Liu et al., 1997; Ormond and Ortoleva, 2000].
[6] At a microscopic scale, in an experiment performed

on plaster, Daccord [1987] observed the formation of a
highly branched wormhole network.Wells et al. [1991] used
a lattice-gas automata (LGA) to simulate the coupled solute
transport and chemical reaction at mineral surfaces and in
pore networks. Janecky et al. [1992] applied a similar
method for simulating geochemical systems.
[7] Using a combination of an experimental study and

lattice-Boltzmann (LB) simulations, Kelemen et al. [1995]
demonstrated the phenomenon of channel growth with and
without an initial solution front. Salles et al. [1993] used
numerical schemes partly based on random walks to study
deposition in porous media in the quasi-steady limit where
the geometrical changes are very slow.
[8] Bekri et al. [1995] applied similar numerical schemes

in a study that focused on the dissolution of porous media.
When simulating dissolution in the Menger sponge, they
found that dissolution is expected to occur as follows: For
small Peclet-Damkohler (PeDa) and small Peclet (Pe)
numbers, dissolution occurs over all the solid walls. For
large PeDa and large Pe, dissolution occurs along the main
channel parallel to the flow direction. For Pe and PeDa of
order one, dissolution occurs isotropically around the cen-
tral cavity and symmetrically along the flow direction. For
large PeDa and small Pe, dissolution occurs around the
central cavity and then along the main channels. Under the
same conditions, Bekri et al. [1997] used a finite difference
scheme to study the deposition and/or dissolution of a single
solute in a single fracture.
[9] Dijk and Berkowitz [1998] developed a semianalytical

model of precipitation and dissolution by the first-order
reactions in two-dimensional fractures. They took into
account the change in fracture shape. They also proposed
applications to realistic geochemical conditions. Their
results are as follows: Precipitation in the fracture is highly
uniform for (1) low PeDa and typical Pe and (2) typical
PeDa and high Pe. Precipitation in the fracture is generally
nonuniform for typical PeDa and typical Pe. Precipitation in
the fracture is highly nonuniform for (1) high PeDa and
typical Pe and (2) typical PeDa and low Pe.
[10] The dissolution phenomenon also has been investi-

gated using analog network simulations [Hoefner and
Fogler, 1988; Fredd and Fogler, 1998]. The simulation
results were similar (qualitatively) to results obtained from
acidizing experiments.
[11] In previous work [Kang et al., 2002], we developed

an LB model [Chen and Doolen, 1998] to simulate coupled
flow and chemical reaction in porous media. We took a
systematic approach in considering the dynamic processes
of convection, diffusion, and reaction, as well as the com-
plex geometry of natural porous media and its evolution (the
latter caused by chemical reaction). The simulation results
agreed qualitatively with the experimental and theoretical
analyses conducted by other researchers. Furthermore, our
results substantiated the previous finding that there exists an
optimal injection rate at which (1) the wormhole is formed

and (2) the number of pore volumes of the injected fluid to
break through is minimized. The results also confirmed the
following experimentally observed phenomenon: as HCl
changes to HAc, the optimal injection rate decreases and
the corresponding minimized number of pore volumes to
break through increases.
[12] In this study, we extend the LB method so that we

can investigate the coupled dissolution and precipitation
process in a simplified porous medium. Our objective is to
study the effects of some important dimensionless control
parameters, such as the Pe and PeDa numbers. We also
examine the conditions necessary for approximately revers-
ing dissolution and precipitation.

2. Model and Theory

2.1. Lattice-Boltzmann Method for Fluid Flow

[13] The following LB equation can simulate fluid flow:

fi xþ eidt; t þ dtð Þ ¼ fi x; tð Þ � fi x; tð Þ � f
eq
i r; u; Tð Þ
t

; ð1Þ

where fi is the particle velocity distribution function along
the i direction, dt is the time increment, t is the relaxation
time related to the kinematic viscosity by n = (t � 0.5)RT,
and fi

eq is the corresponding equilibrium distribution
function. This function has the following form:

f
eq
i r; u; Tð Þ ¼ wir 1þ ei � u

RT
þ ei � uð Þ2

2 RTð Þ2
� u2

2RT

" #
; ð2Þ

where R is the gas constant; r, u, and T are the density,
velocity, and temperature of the fluid, respectively; ei
are the discrete velocities; and wi are the associated
weight coefficients. Figure 1 shows a commonly used
two-dimensional, nine-speed LB model, for which we have
RT = 1/3 and

ei ¼

0 i ¼ 0;

cos
i�1ð Þp
2

; sin i�1ð Þp
2

� �
i ¼ 1� 4;

ffiffiffi
2

p
cos

i�5ð Þp
2

þ p
4

h i
; sin i�5ð Þp

2
þ p

4

h i� �
i ¼ 5� 8:

8>>>><
>>>>:

ð3Þ

The corresponding weight coefficients are w0 = 4/9, wi = 1/9
for i = 1, 2, 3, 4, and wi = 1/36 for i = 5, 6, 7, 8. The fluid’s
density and velocity are calculated using

r ¼
X
i

f i; ð4Þ

ru ¼
X
i

ei f i: ð5Þ

[14] Using the Chapman-Enskog expansion, we can
prove that the LB equation (1) recovers the correct conti-
nuity and momentum equations at the Navier-Stokes level
[Qian et al, 1992; Chen et al, 1992]:

@r
@t

þr � ruð Þ ¼ 0; ð6Þ
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@ ruð Þ
@t

þr � ruuð Þ ¼ �rpþr � rn ruþ urð Þ½ 
; ð7Þ

where p = r{R}T is the fluid pressure.

2.2. Lattice-Boltzmann Method for Solute Transport

[15] In this study, we assume that the solute concentration
is sufficiently low so that we can describe the solute
transport using another distribution function, gi, which
satisfies a similar evolution equation as fi :

gi xþ eidt ; t þ dtð Þ ¼ gi x; tð Þ � gi x; tð Þ � g
eq
i C;u;Tð Þ

ts
; ð8Þ

where ts is the relaxation time related to the diffusivity by
D = (ts � 0.5)RT and gi

eq is the corresponding equilibrium
distribution function. This latter function has the following
form:

g
eq
i C; u; Tð Þ ¼ wiC 1þ ei � u

RT
þ ei � uð Þ2

2 RTð Þ2
� u2

2RT

" #
; ð9Þ

where C is the solute concentration. This concentration is
defined by

C ¼
X
i

gi: ð10Þ

Using the Chapman-Enskog expansion technique, we can
prove that the LB equation (8) recovers the following
convection-diffusion equation [Dawson et al., 1993]:

@C

@t
þ u � rð ÞC ¼ r � DrCð Þ: ð11Þ

2.3. Boundary Conditions

[16] In this study, we assume the rate of deformation for
the solid surface to be so slow that we can determine the
velocity field in the fluid at any time by solving the
evolution equation of the particle distribution function with

a bounce back condition at the walls. Macroscopically, this
corresponds to the quasi-static hypothesis that the velocity
field is determined by Navier-Stokes equation with no-slip
condition at the current position of walls. The bounce back
LB boundary condition at the wall nodes requires little
computational time. Even though it has only first-order
accuracy at the boundaries, this technique remains the most
practical way to handle the no-slip condition in complex
geometries, such as those encountered in real porous media
[Chen and Doolen, 1998].
[17] We consider the first-order kinetic reaction model at

the solid-fluid interface:

D
@C

@n
¼ kr C � Csð Þ; ð12Þ

where D is the diffusivity, C is the solute concentration at
the interface, Cs is the saturated concentration, kr is the local
reaction rate constant, and n is the direction normal to the
interface pointing toward the fluid phase.
[18] Equation (12) describes a boundary condition for a

macroscopic level surface reaction. Kang et al. [2002]
formulated a boundary condition for the distribution func-
tion. We have based our approach on the observation that at
a stationary wall, the nonequilibrium portion of the distri-
bution function is proportional to the dot product of the
function’s microscopic velocity and the concentration gra-
dient. For example, if we take a wall node in the left bottom
corner (see Figure 2), we can determine g3, g4, and g7 based
on the streaming process of the particle distribution function
gi. In contrast, we must determine g1, g2, g5, g6, and g8
using the boundary conditions. To determine the solute
concentration at this node, we use the known distribution
function g7 [Kang et al., 2002]:

C ¼ g7 þ bCs

bþ w7

; ð13Þ

where b = 1
32
(kr/D). On the basis of C and u, we can

calculate gi
eq from equation (9). From this result we then can

calculate the unknown distribution functions:

g1 ¼ g
eq
1 þ g

eq
3 � g3; ð14Þ

Figure 1. Schematic illustration of the two-dimensional,
nine-speed lattices.

Figure 2. A wall node at the left bottom corner.
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g2 ¼ g
eq
2 þ g

eq
4 � g4; ð15Þ

g5 ¼ g
eq
5 þ g

eq
7 � g7; ð16Þ

g6 ¼ g
eq
6 þ g3 � g4

4
ffiffiffi
2

p ; ð17Þ

g8 ¼ g
eq
8 � g3 � g4

4
ffiffiffi
2

p : ð18Þ

2.4. Dimensionless Control Parameters

[19] Simple dimensional analysis suggests that three
dimensionless parameters control this process. They are
the relative concentration y = C0/Cs, Peclet number Pe =
UL/D, and Damkohler number Da = kr/U. In the definition
of these parameters, C0 is the concentration of the inflowing
solution, and U and L are characteristic velocity and length
of the system, respectively.
[20] The Peclet number describes the effect of advection

relative to that of molecular diffusion on the solute trans-
port. The Damkohler number describes the effect of reaction
relative to that of convection. Their product PeDa = krL/D,
describes the reaction’s effect relative to diffusion. This
product is frequently used because the convection dimin-
ishes at the interface. Our focus during this study is on how
Pe and PeDa affect the dissolution/precipitation process.

3. Simulation Results and Discussion

[21] Figure 3 shows the two-dimensional geometry used
in our simulations, as well as the initial distribution of the
solute concentration. The initial medium is 100 by 195 (in
lattice units), with a few arrays of void space at the left and
right boundaries. In this medium are two horizontal frac-
tures with widths of 30 and 4, respectively. For the smaller
fracture, the Knudsen number is not very small; as a result,
the fluid flow in it cannot be treated as a continuum flow.
Instead, there will be a mean slip velocity on wall boundary
because of the kinetic nature of the LB method [Nie et al.,
2002]. As dissolution helps the channel grow larger, more
grids are used, and as a result the flow can be treated as a
continuum flow. The density (pressure) is fixed at both the
left inlet and the right outlet boundaries [Zou and He, 1997].
[22] Initially, the solution is saturated and no surface

reaction occurs. When flow achieves a steady state, the
inflowing fluid changes into a pure solvent. It is then that
dissolution occurs. After part of the medium dissolves, the
inflowing fluid changes to a supersaturated solution whose
solute concentration is twice that of a saturated solution.
Precipitation takes place soon after.
[23] To make sure that steady state is achieved at the

current geometry, we perform the flow simulation every time
there is a change in pore or grain nodes. Because dissolution
or precipitation occurs only at the solid-liquid interface, each
change does not incur a dramatic change in porosity.
[24] We used the following four combinations of Pe and

PeDa values to investigate how such combinations affect
the dissolution/precipitation process: (1) large Pe and PeDa

(Pe = 45, PeDa = 7.5), (2) moderate Pe and PeDa (Pe =
0.45, PeDa = 0.075), (3) small Pe and PeDa (Pe = 0.0045,
PeDa = 0.00075), and (4) small Pe but large PeDa (Pe =
0.0045, PeDa = 7.5).
[25] The characteristic length in the definition of Pe and

PeDa is the width of the larger fracture of the original
medium. The characteristic velocity is the center line
velocity of the fracture at its initial steady state. The actual
values of Pe and PeDa change with time as a result of
dissolution and/or precipitation.
[26] Figure 4 shows the resultant geometry and distribu-

tion of solute concentration (caused by dissolution) just
before the inflowing liquid changes from pure solvent to
supersaturated solution. The black regions indicate solids.
Figure 4a shows the dissolution process as diffusion-limited.
In this case, the highest dissolution rates occur on the walls
that face the inlet boundary and on the walls of the larger
fracture. These rates are high because the flow rapidly
renews the solution in these regions.
[27] However, the smaller fracture remains intact, except

for the upstream region. Because the fluid flows very slowly
in this fracture, the diffusion does not transport much solute
out of the fracture during such a short time frame. As a
result, the solute concentration in the small fracture is
always close to the saturated one, thereby making the
dissolution rate very low. Because the larger fracture dis-
solves faster than the smaller one, the dissolution process is
unstable when both Pe and PeDa are large. In addition, this
case also gives rise to the ‘‘wormholing’’ phenomenon, in

Figure 3. Schematic illustration of the two-dimensional
geometry and the initial distribution of the solute concen-
tration. See color version of this figure at back of this issue.
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which the initially large fractures dominate at the end of the
dissolution process. Our observations agree with those of
Bekri et al. [1995].
[28] In Figure 4b, both Pe and PeDa are moderate.

Dissolution occurs on the walls facing the inlet boundary,
as well as on the walls of both fractures. Whereas the
upstream walls dissolve uniformly, the fracture walls do so
nonuniformly. As pure solvent penetrates the fractures, the
fracture walls dissolve and the dissolution increases the
solute’s concentration. As a result, the dissolution slows
down along the direction of the flow.
[29] Figure 4b also shows that the low-concentration

solution penetrates the larger fracture more quickly than
the smaller fracture (the solution is downstream in the larger
fracture but only midstream in the smaller fracture). The
reason for this difference in speed is that the actual Da is
smaller for the larger fracture than for the smaller fracture.
[30] When both Pe and PeDa are small, the dissolution

process is reaction-limited. The dissolution rate is low
enough for the solution’s concentration field to remain nearly
uniform all the time. Therefore we expect the dissolution to
be uniform over all the solid walls, as shown in Figure 4c.
[31] When Pe is small but PeDa is large, dissolution

occurs mostly on the walls that face the inlet flow boundary

and are on the very upstream part of the fracture. As shown
in Figure 4d, the original fractures do not expand and no
dissolution takes place downstream. This is the face disso-
lution, where solids are dissolved starting from the inlet
flow face and the permeability increase is not significant
because no dominant channels are formed, as mentioned in
the paper by Kang et al. [2002]. In contrast to case c, the
solute concentration distribution is highly nonuniform as it
increases along the fracture direction.
[32] Figure 5 shows the resultant geometry and distribu-

tion of solute concentration (due to precipitation) when one
of the fractures is clogged sometime after the inflowing
fluid changes from pure solvent to supersaturated solution.
Combining Figure 5 with Figure 4 reveals four different
precipitation patterns among the four cases. In case a,
precipitation occurs mostly on the larger fracture walls,
particularly in the wider upstream part. As a result, perme-
ability decreases rapidly, as shown in Figure 6a.
[33] Figures 4b and 5b show that for case b precipitation

occurs on the walls of both fractures, as well as on the walls
that face the inlet boundary. Much like the dissolution
process described earlier, precipitation also slows down
along the flow direction. The smaller fracture clogs first.
[34] Case c mirrors the reversed process of dissolution in

that precipitation is uniform over all the solid walls, as

Figure 4. Resulting geometry and distribution of the
solute concentration due to dissolution, just before the
inflowing fluid is switched from pure solvent to super-
saturated solution. The concentration is normalized by the
saturated one: (a) Pe = 45, PeDa = 7.5; (b) Pe = 0.45,
PeDa = 0.075; (c) Pe = 0.0045, PeDa = 0.00075;
(d) Pe = 0.0045, PeDa = 7.5. See color version of this
figure at back of this issue.

Figure 5. Resulting geometry and distribution of the
solute concentration due to precipitation, when a fracture is
clogged. The concentration is normalized by the saturated
one: (a) Pe = 45, PeDa = 7.5; (b) Pe = 0.45, PeDa = 0.075;
(c) Pe = 0.0045, PeDa = 0.00075; (d) Pe = 0.0045,
PeDa = 7.5. See color version of this figure at back of
this issue.
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shown in Figures 4c and 5c. As a result, the smaller fracture
clogs first. The solute concentration is uniform.
[35] In case d, precipitation occurs mostly on the walls

facing the inlet boundary. However, some precipitation does
occur in the small fracture, and as a result the small fracture
clogs, as shown in Figures 4d and 5d. Because the solute
has a high reaction rate but low convection and diffusion, it
is quickly consumed at the upstream. Moreover, the con-
centration remains almost completely saturated in most of
the pore spaces, as shown in Figure 5d.
[36] Figure 6 shows the time evolution of normalized

porosity and permeability, whereas Figure 7 shows the
normalized permeability-porosity relationship. The vertical
lines in Figure 6 mark the beginning of precipitation. As
shown in Figure 6, the reaction goes faster in cases a and d;
in both cases, PeDa is large. In case c, PeDa is small, and as
a result the reaction rate is the slowest of the four.
[37] Table 1 lists normalized permeability values for

different dissolution cases that have a normalized porosity
value of 2. As shown in this table, the permeability value
increases most in case a, where a dominant wormhole
forms. The value increases the least in case d, where face
dissolution dominates [Kang et al., 2002].
[38] Except for case c, permeability and porosity values

continue to increase after the inflowing fluid changes to a
supersaturated solution. The principal reason for such a

sustained increase is that the pore spaces are filled with low-
concentration solution. This solution continues to dissolve
the solids before it is replaced with a more concentrated
solution by convection and diffusion.
[39] We also found that the maximum value of perme-

ability lags behind that of porosity. In other words, there is a
short period of time when porosity decreases while perme-
ability increases. This phenomenon is most salient in case b.
In addition to other reasons, the geometry plays an impor-
tant role. As shown in Figure 4b, both fractures are
constricted. Precipitation on the wider, upstream part of
the fractures and dissolution on the narrower, downstream
part help the fracture walls become parallel to the horizontal
direction. Thus permeability increases even though more
solids are precipitated than dissolved. In case c, the reaction
is so slow that the dilute solution in the system is replaced
by a more concentrated one before the former can dissolve
any of the solids.
[40] The same conclusions can be drawn from Figure 7.

Additionally, in case c, the permeability-porosity relation-
ship curve of deposition almost coincides with that of
dissolution, implying that these two processes are highly
reversible when both Pe and PeDa are small.
[41] We also performed simulations with small PeDa and

large Pe. The results are not presented in this paper because
they are very similar to the previous case. This similarity is

Figure 6. Time evolution of normalized porosity and permeability. k0, �0 are permeability and porosity
of the initial geometry, respectively. Time is normalized by characteristic time L2/D. The vertical lines
indicate the start of precipitation: (a) Pe = 45, PeDa = 7.5; (b) Pe = 0.45, PeDa = 0.075; (c) Pe = 0.0045,
PeDa = 0.00075; (d) Pe = 0.0045, PeDa = 7.5.
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in line with Bekri et al.’s [1995] conclusion that the effect
of the Peclet number is only significant for large PeDa
values.

4. Conclusions

[42] We have extended an LB model developed previ-
ously to study the dissolution/precipitation process in a
simplified porous media. We focused on the effects of Pe
and PeDa numbers on the transport and reaction process.
[43] Dissolution principally occurs on the walls that face

the inlet boundary and along the walls of the larger
fracture if (1) the process is diffusion-limited (PeDa > 1)
and (2) convection is predominant (Pe > 1). Such disso-
lution results in a wormhole phenomenon in which the
initial main flow path becomes even more dominant
because of the dissolution.
[44] If (1) the process is diffusion-limited (PeDa > 1) and

(2) convection is insignificant (Pe < 1), dissolution princi-
pally occurs on the walls that face the inlet boundary.
However, fractures do not grow larger. The system also
experiences a slow increase in permeability.
[45] In both cases, precipitation results are similar to

those of dissolution, but in the opposite direction. However,
the effects of dissolution cannot be reversed by precipita-
tion, even when the reaction driving force has the same
magnitude and all other relevant parameters are identical.

[46] If the process is reaction-limited (PeDa � 1),
dissolution is nearly uniform over all the solid surface.
Moreover, precipitation can approximately reverse its
effects. In this case, the process is not sensitive to the Pe
number.
[47] If both Pe and PeDa are moderate, then the effects of

convection, diffusion, and reaction are comparable. The
reaction occurs on the walls that face the inlet boundary
and on the walls of both fractures; the reaction favors the
upstream solid surfaces. The interplay of the various trans-
port mechanisms does not enable dissolution and precipita-
tion to reverse their effects by interchanging with each
other.
[48] We selected a simplified medium for this study so

that we could conveniently analyze the effects of the control
parameters found in the dissolution/precipitation process.
However, the conclusions drawn from this study can be
readily extended to more realistic porous media because (1)
the simplified medium’s larger fracture corresponds to the

Figure 7. Dependence of permeability on porosity. Both permeability and porosity are normalized by
the values of the initial geometry: (a) Pe = 45, PeDa = 7.5; (b) Pe = 0.45, PeDa = 0.075; (c) Pe = 0.0045,
PeDa = 0.00075; (d) Pe = 0.0045, PeDa = 7.5.

Table 1. Values of k/k0 at �/�0 = 2 for Different Cases

Case k/k0

a 4.59
b 4.23
c 4.21
d 1.67
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high permeable regions found in more complex media and
(2) the simplified medium’s smaller fracture corresponds to
the low permeable regions encountered in more complex
media. Furthermore, the LB method we used to obtain the
results documented in this paper is equally applicable to
more realistic porous media, as demonstrated in the single-
phase flow study of Zhang et al. [2000] and in the
dissolution study of Kang et al. [2002]. In fact, for the
medium used in this study, even though its initial geometry
is relatively simple, it becomes quite complex and irregular
as a result of dissolution and precipitation.

Notation

C solute concentration.
C0 concentration of inflowing fluid.
Cs saturated concentration.
D diffusivity.
Da Damkohler number.
ei particle discrete velocity.
fi particle distribution function to simulate fluid flow.

fi
eq equilibrium distribution function of fi.
gi particle distribution function to simulate solute

transport.
gi
eq equilibrium distribution function of gi.
kr reaction rate constant.
L characteristic length.
p fluid pressure.

Pe Peclet number.
PeDa Peclet-Damkohler number.

R gas constant.
T temperature.
u fluid velocity.
r fluid density.
n fluid kinematic viscosity.
dt time increment.
t relaxation time for fi.
ts relaxation time for gi.
wi weight coefficient.
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Figure 3. Schematic illustration of the two-dimensional
geometry and the initial distribution of the solute
concentration.

Figure 4. Resulting geometry and distribution of the
solute concentration due to dissolution, just before the
inflowing fluid is switched from pure solvent to super-
saturated solution. The concentration is normalized by
the saturated one: (a) Pe = 45, PeDa = 7.5; (b) Pe = 0.45,
PeDa = 0.075; (c) Pe = 0.0045, PeDa = 0.00075; (d) Pe =
0.0045, PeDa = 7.5.
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Figure 5. Resulting geometry and distribution of the solute concentration due to precipitation, when
a fracture is clogged. The concentration is normalized by the saturated one: (a) Pe = 45, PeDa = 7.5;
(b) Pe = 0.45, PeDa = 0.075; (c) Pe = 0.0045, PeDa = 0.00075; (d) Pe = 0.0045, PeDa = 7.5.
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