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This work proposed a unified approach to impose both nonslip and slip boundary conditions for the lat-
tice Boltzmann method (LBM). By introducing the tangential momentum accommodation coefficient
(TMAC), the present implementation can determine the change of the tangential momentum on the wall
and then impose the correct boundary conditions for LBM. The simulation results demonstrate that this
implementation is equivalent to the first-order slip model.
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1. Introduction

The lattice Boltzmann method (LBM) has been proved a power-
ful numerical tool for fluid mechanics since it can recover the
Navier–Stokes equations with Chapman–Enskog expansions. In
the beginning of the development, a lot of researches focused on
the problems in which nonslip boundary conditions were applica-
ble. The most popular scheme applied is the bounce-back scheme
because of its easy implementation. However, the bounce-back
scheme has been proved that it would generate a nonzero slip
velocity [1]. There were then several works to impose correct non-
slip boundary conditions in LBM [2–8].

On the other hand, the developments of micro-electro-
mechanical systems (MEMS) and nano-technology have stimu-
lated the study of the systems with micro-scale sizes, such as
microchannel flows. In such the scale range, the mean free path
of the fluid could be the same order as the geometric size of the
devices. Thus, the Knudsen layer is large and the nonslip bound-
ary conditions are no longer valid. Therefore, many researches
have applied the LBM with various slip boundary conditions to
the microscale fluid systems [9–17]. Since the specular reflection
implies slippage, a popular slip boundary scheme introduced two
parameters (r and s, r + s = 1) to adjust the weighting of distribu-
tions on the wall between bounce-back and specular reflections
[10,11,16,17]. When r = 1, it recovers the bounce-back scheme.
Their physical boundaries locates between nodes and their slip
velocity is the velocity at the nodes nearest to the wall, not
the velocity on the wall. To get the ordinary slip velocity, an
extrapolation is required [11]. Therefore, if a fair comparison be-
tween the numerical work and the theoretical analysis is de-
sired, either an extrapolation of the numerical work or an
interpolation of the theoretical work should be made.
ll rights reserved.
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The purpose of this work is then to propose a unified approach
for non-slip and slip boundary conditions in LBM. First, the micro-
scopic point of view of the slip phenomena is reviewed. The key
point is the tangential momentum change caused by the boundary.
With the help of the tangential momentum accommodation coeffi-
cient (TMAC, r) [18], one can know the change of the tangential
momentum of the fluid on the wall. Therefore, correct boundary
conditions can be imposed for LBM. In addition, the present
scheme locate the nodes on the physical boundaries. This makes
the verifications of boundary conditions more directly, no extrapo-
lations or interpolations required. The present scheme is applicable
to either nonslip or slip boundary conditions. The numerical results
show that this scheme is equivalent to the first-order slip model
[18].
2. Slip phenomena and tangential momentum accommodation
coefficient

From the microscopic point of view, when the fluidic particles
are specularly reflected, the tangential velocity are preserved. It
implies that the wall would not exert tangential stresses on the
fluid (shear stress free) and slippage would be observed. On the
other hand, if the wall exerts tangential stresses on the fluid, the
tangential momentum would be altered after reflection. To deter-
mine the momentum change, one can first calculate the incident
tangential momentum (PI) by

PI �
Z

v�n60
ðf vÞkdv ð1Þ

where f is the mass density distribution of the fluid, n is the nor-
mal direction of the wall toward the fluid field, and vk is the
velocity in the tangential direction. From the macroscopic point
of view, PI can be expressed by the product of the density and
the velocity:
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qI �
Z

v�n60
fdv; PI � qIUI ð2Þ

where qI is the density of the incident particles on the boundary, and
UI is the incident tangential velocity. Similarly, the reflected parts are

qR �
Z

v�nP0
fdv; PR �

Z
v�nP0

ðf vÞkdv ¼ qRUR: ð3Þ

Meanwhile, the overall average density, q, and the overall aver-
age tangential velocity of the fluid on the boundary, U, are deter-
mined by

q �
Z

fdv ¼
Z

v�n60
þ
Z

v�nP0

� �
fdv ¼ qI þ qR ð4Þ

qU �
Z
ðf vÞkdv ¼

Z
v�n60
ðf vÞkdvþ

Z
v�nP0

ðf vÞkdv ¼ qIUI þ qRUR: ð5Þ

From the mass conservation and to avoid particle accumula-
tions on the boundaries, the reflected fluid should be equal to
the incident fluid for an impermeable boundary. Therefore,
qI = qR = q/2.

To describe the effect of the boundary on the tangential
momentum of the fluid, the tangential momentum accommoda-
tion coefficient r (TMAC) is defined as [18,19]

r � qRUR � qIUI

qRUW � qIUI
¼ UR � UI

UW � UI
ð6Þ

where UW is the tangential velocity of the wall. Thus, the velocity U
can be expressed by

U ¼ 1
q
ðqIUI þ qRURÞ ¼

1
2
rUW þ 1� r

2

� �
UI: ð7Þ

When r = 0, it means no shear stress acts on the fluid and the
wall is a slip boundary. On the other hand, if r=2, U = UW and it
is the non-slip boundary condition.

In order to consider the effect of the permeation, and to describe
the effects of the boundary on the tangential momentums with the
macroscopic quantities, e.g., q and U, a modified tangential
momentum accommodation coefficient, r0, is defined by

r0 � U � USR

UW � USR
ð8Þ

where USR is the average tangential velocity under the specular
reflection by the impermeable boundary, which is equal to UI. The
relation between r and r0 is

r0 ¼ qU � qUSR

qUW � qUSR
¼ ðqIUI þ qRURÞ � ðqI þ qRÞUI

qðUW � UIÞ

¼ qR

q
UR � UI

UW � UI
¼ qR

q
r: ð9Þ

For an impermeable boundary, r = 2r0. The tangential momen-
tum change of the fluid caused by the boundary can be also deter-
mined by

qðU � USRÞ ¼ r0qðUW � USRÞ: ð10Þ

If USR can be expressed by the Taylor expansion at the wall
about one mean free path (k) away,

USR � U þ k
oU
on

����
w

þ � � � ; ð11Þ

then the slip velocity, U � UW, can be calculated by

U � UW �
1� r0

r0
k
oU
on

����
w

: ð12Þ

This is the first-order slip model [18].
3. General description of LBM

The lattice Boltzmann equation with BGK relaxation time
approximation can be written as.

fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼
Dt
s

f eq
i ðx; tÞ � fiðx; tÞ
� �

ð13Þ

where ci is the basis vector of the lattice, s is the relaxation time
constant for the flow field, and the superscript eq denotes the distri-
bution at equilibrium. The density, q, velocity, u, of the fluid are
determined by

q ¼
X

i

fi; qu ¼
X

i

fici: ð14Þ

In this study, the D2Q9 lattice is used as illustration. For D2Q9
lattice, the nine basis vectors are given by

ci ¼

0; i ¼ 0

cos ði�1Þp
2

� �
ix þ sin ði�1Þp

2

� �
iy; i ¼ 1 � 4

ffiffiffi
2
p

cos ð2i�1Þp
4

� �
ix þ sin ð2i�1Þp

4

� �
iy

h i
; i ¼ 5 � 8

8>>><
>>>:

ð15Þ

The corresponding equilibrium distributions are

f eq
i ¼ qwi 1þ 3u � ci þ

9
2
ðu � ciÞ2 �

3
2

uj j2

 �

ð16Þ

where w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, w5 = w6 = w7 = w8 = 1/36.
The macroscopic transport property of the fluid like kinematic vis-
cosity m is determined by

m ¼ 1
3

s
Dt
� 1

2

� �
: ð17Þ
4. Slip boundary conditions in LBM

For a boundary with given r0 and the permeation velocity UP,
the unknown distributions of the boundary nodes are contributed
from three parts: the specular reflection (f sr

i ), the stress exerted by
the wall (f w

i ), and the permeation condition (f p
i ):

fi ¼ f sr
i þ f w

i þ f p
i ð18Þ

where the subscript i of the unknown distributions satisfies ci � n > 0.
Each part can be treated individually as follows. First, the specular-
reflection is readily determined if the boundary is horizontal or verti-
cal. For example, the unknown distributions for a upper horizontal
wall are f4, f7 and f8. Thus, f sr

4 ¼ f2; f sr
7 ¼ f6; f sr

8 ¼ f5.
Once f sr

i are determined, USR can be calculated by

q ¼
X

i

fi ð19Þ

qUSR ¼
X

ci �n60

ðficiÞk þ
X

ci �n>0

ðf sr
i ciÞk: ð20Þ

The change of the tangential momentum caused by the wall is
contributed by unknown f w

i .

r0qðUW � USRÞ ¼
X

ci �n>0

ðf w
i ciÞk ð21Þ

0 ¼
X

ci �n>0

ðf w
i ciÞ? ð22Þ

0 ¼f w
i for normal direction: ð23Þ

The zero sum of the normal parts in Eq. (22) makes sure that
f w
i ’s alter the tangential momentum only. It also implies

P
f w
i will

not contribute to the density calculation.
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If the boundary is permeable, the permeation conditions are
counted by

qUP ¼
X

ci �n60

ðficiÞ? þ
X

ci �n>0

ðf p
i ciÞ? ð24Þ

0 ¼
X

ci �n>0

ðf p
i ciÞk: ð25Þ

The zero sum of the tangential velocity of f p
i in Eq. (25) guaran-

tees that f p
i won’t affect the calculation of the tangential

momentum.

4.1. D2Q9 lattice

Consider a lower flat boundary in D2Q9 lattice as an example.
The tangential direction is in x direction, and the normal direction
is in +y direction. The unknown distributions after streaming pro-
cesses are f2, f5, and f6. The corresponding specular-reflection dis-
tributions are then

f sr
2 ¼f4; f sr

5 ¼ f8; f sr
6 ¼ f7 ð26Þ

qUSR ¼f1 � f3 þ 2ðf8 � f7Þ: ð27Þ

The shear stress exerted by the wall leads to the momentum
change.

r0qðUW � USRÞ ¼
X

ci �n>0

ðf w
i ciÞx ¼ f w

5 � f w
6 ð28Þ

0 ¼
X

ci �n>0

ðf w
i ciÞy ¼ f w

2 þ f w
5 þ f w

6 ¼ f w
5 þ f w

6 ð29Þ

where f w
2 ¼ 0. Therefore,

f w
5 ¼

r0q
2
ðUW � USRÞ; f w

6 ¼ �f w
5 : ð30Þ

If the wall is permeable and the permeation velocity, UP(=Uy in
this case), is known, then

qUP ¼
X

i

ðficiÞy ¼ f p
2 þ f p

5 þ f p
6 ð31Þ

0 ¼
X

ci �n>0

ðf w
i ciÞx ¼ f p

5 � f p
6 : ð32Þ

Additional constraint is needed to determine f p
2 , f p

5 , and f p
6 . Here

the non-equilibrium bounce-back scheme in normal direction is
applied [20]. Thus,

f p
2 ¼

2
3
qUy; f p

5 ¼ f p
6 ¼

1
6
qUy: ð33Þ

The only unknown now is q, which can be determined by

q �
X

i

fi ¼ f0 þ f1 þ f3 þ 2ðf4 þ f7 þ f8Þ þ qUy

q ¼ f0 þ f1 þ f3 þ 2ðf4 þ f7 þ f8Þ
1� Uy

: ð34Þ

In summary,

f2 ¼ f4 þ
2
3
qUy ð35Þ

f5 ¼ r0f7 þ ð1� r0Þf8 þ
r0

2
qUW � ðf1 � f3Þ½ � þ 1

6
qUy ð36Þ

f6 ¼ r0f8 þ ð1� r0Þf7 �
r0

2
qUW � ðf1 � f3Þ½ � þ 1

6
qUy: ð37Þ

The implementation has some important features. The presence
of UW indicates that the new scheme deals with moving boundary
conditions directly. This is indeed an important result. If the refer-
ecne frame moves with the wall velocity like [22], when the pop-
ulations of interior nodes propagate to the boundary nodes, one
has to make transformations of fi on the boundary nodes so that
all values of fi are counted on the same reference frame. Moreover,
the representation of f eq

i in the moving frame may not be the same
as that in the stationary frame. The present scheme applies the
same stationary frame to all nodes and no such transformation is
necessary.

In addition, one should notice the presence of f1 and f3. In order
to implement the slip and/or nonslip boundaries more correctly, f1

and f3 should be considered since they are involved in the calcula-
tion of the fluid velocity and then will affect the slip velocity in
LBM. For nonslip boundaries (r0 = 1), it recovers the results by
[20,21].

This scheme can also determine the unknown distributions of
the corner nodes uniquely, no need to additionally assume the con-
stant density at the corner nodes, as done in [20]. As an illustration,
consider the lower-left corner of an impermeable, stationary
boundaries, UW = UP = 0. The unknown distributions are f1, f2, f5,
f6, and f8. From the non-equilibrium bounce-back scheme in the
normal directions, one can get

f1 ¼ f3; f 2 ¼ f4: ð38Þ

If considering the lower boundary, the zero vertical velocity re-
quires f5 + f6 = f7 + f8. On the other hand, if considering the left
boundary, the zero horizontal velocity requires f5 + f8 = f6 + f7.
These two constraints lead to

f5 ¼ f7; f 6 ¼ f8: ð39Þ

Substituting into Eq. (37), one gets

f6 ¼ r0f6 þ ð1� r0Þf7: ð40Þ

Thus,

0 ¼ ð1� r0Þðf6 � f7Þ: ð41Þ

To solve f6 and f7 for arbitrary r0, it requires f6 = f7. It explains
why Zou and He [20] could not determine the unknowns uniquely
because for nonslip boundary conditions (r0 = 1), Eq. (41) becomes
trivial and leaves f6 and f7 undetermined.

5. Numerical results

The Couette flows and planar Poiseuille flows are performed as
benchmark tests for the present scheme.

5.1. Couette flows

Consider a steady Couette flow with the upper plate moving at
constant speed UW and the lower plate stationary. The distance be-
tween two plates is H. The simulation uses the nodes of Nx �
Ny = 11 � 11 with periodic boundary conditions in the horizontal
direction. The spacing between two plates is then H = Ny � 1 = 10.
The velocity profile at steady-state should be linear. Suppose r0

of the upper plate is given. Without loss of the generality, the lower
plate is assumed nonslip (r0 = 1). Thus, the slip velocity,
U(y = H) � UW, can be determined by

oU
oy
¼ Uðy ¼ HÞ

H
¼ const ð42Þ

Uðy ¼ HÞ � UW ¼
1� r0

r0
k
oU
on

����
y¼H

: ð43Þ

Fig. 1 shows the normalized steady-state velocity profiles (U/UW)
under different values of r0. The linear velocity profiles are verified.
For r0 = 1, the simulation captures the nonslip boundary condition.
In addition, one can see that the slip velocity is not linear with r0.
For r0 P 0.5, the slip velocity is less 5%.
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Fig. 1. Steady-state normalized velocity profiles for different r0 with s = 1. The
straight lines are the fitting lines.
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Recall that the Knudsen number is defined as Kn � k/H,
therefore,

Kn ¼ k
H
¼ r0

1� r0
UW

Uðy ¼ HÞ � 1
� �

: ð44Þ

Note that the mean free path depends on the collision fre-
quency. Therefore, Kn would depend on s, but it should be inde-
pendent of r0. Fig. 2 presents the calculated Kn at different r0

under s = 1. The horizontal line indicates that Kn is independent
of r0, as expected. The value of Kn is equal to 1/30. This means that
k = Kn H = 1/3.

The simulation results suggest that the Couette flow can be
used to determine the mean free path in LBM for different relaxa-
tion time s. Fig. 3 presents k as a function of the relaxation time s at
fixed r0 = 1/2. The relation is linear and the slope is 1/3.

k ¼ 1
3
s; Kn ¼ 1

3
s
H
: ð45Þ

From the macroscopic point of view, k is related to
m ¼ 1

3 ðs� 1=2Þ. The numerical result shows that no 1/2 shift is
necessary.
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5.2. Planar Poiseuille flows

Consider a planar Poiseuille flow within two horizontal station-
ary plates with same r0. The spacing between the plates is H. The
simulation uses the nodes of Nx � Ny = 101 � 11. Pressure bound-
ary conditions are imposed at the inlet and the exit. The steady-
state velocity profiles for the flow are parabolic for Poiseuille flows.
Applying Eq. (12) to both plates, one can get the normalized veloc-
ity profiles as

UðyÞ
U0
¼ 4ðY � Y2Þ þ Us ð46Þ

Us ¼
Uðy ¼ 0Þ

U0
¼ 4

1� r0

r0
Kn ð47Þ

where Y = y/H, U0 is the maximum velocity under nonslip boundary
conditions, and Us is the normalized slip velocity.

Fig. 4 shows the normalized velocity profiles at the exit for s = 1.
The profiles fit well the parabolic shapes. It is obvious that the slip
velocity is larger for smaller r0. Fig. 5 presents the normalized slip
velocity as a function of r0. One can see that Eq. (47) can well fit the
simulation results if the Knudsen number is calculated by Eq. (45).
This indicates that the present scheme can well implement a
first-order slip model.
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for various r0 .
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6. Conclusion

A unified implementation for nonslip and slip boundary condi-
tions in LBM were proposed and verified. With a given modified
TMAC r0, the change of the tangential momentum of the fluid
caused by the interactions can be calculated. Therefore, one can
impose the corresponding boundary conditions in LBM. Couette
flows and planar Poiseuille flows were studied under different slip
conditions. When r0 = 1, the simulations produce the nonslip re-
sults. For r0 < 1, the numerical results demonstrate that the present
scheme imposes the first-order slip model. Contrast to the works
placing the physical boundaries between nodes, the present study
made fair comparisons between numerical and theoretical work
directly without any extrapolations. The fact of using the same sta-
tionary frame for all nodes makes the calculations simpler com-
pared with the scheme applying the moving frame on the
boundary nodes.
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