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A b s t r a c t :  Granular materials, like sand or powder, can present very intriguing effects. 
When shaken, sheared or poured they show segregation, convection and spontaneous 
fluctuations in densities and stresses. I will discuss the modeling of a granular medium 
on a computer by simulating a packing of elastic spheres via Molecular Dynamics. Dis- 
sipation of energy and shear friction at collisions are included. In the physical range 
the friction coefficient is found to be a linear function of the angle of repose. On a vi- 
brating plate the formation of convection cells due to walls or amplitude modulations 
can be observed. The onset of fluidization can be determined and is in good agreement 
with experiments. Segregation of larger particles is found to be always accompanied 
by convection cells. There is also ample experimental evidence showing the existence 
of spontaneous density patterns in granular material flowing through pipes or hoppers. 
The Molecular Dynamics simulations show that these density fluctuations follow a 1 / f  '~ 

spectrum. I compare this behavior to deterministic one-dimensional traffic models. A 
model with continuous positions and velocities shows self-organized critical jamming 
behind a slower car. The experimentally observed effects are also reproduced by Lat- 
tice Gas and Boltzmann Lattice Models. Density waves are spontaneously generated 
when the viscosity has a nonlinear dependence on density which characterizes granular 
flow. We also briefly sketch a thermodynamic formalism for loose granular material. 
In a dense packing non-linear acoustic phenomena, like the pressure dependence of the 
sound velocity are studied. Finally the plastic shear bands occurring in large scale de- 
formations of compactified granular media are investigated using an explicit Lagrangian 
technique. 

1. I n t r o d u c t i o n  

Many rather  astonishing phenomena  are known to occur when granular  mate-  
rials like sand or powders move [1 - 4] Examples  are the so-called "Brazil nut" 
segregation [5 - 8], heap format ion under vibrat ion [9 - 11], density waves emit- 
ted f rom outlets  [12] and 1/ f  noise in the power spec t ra  of local forces [13]. All 
these effects originate in the ability of granular  materials to form a hybrid s tate  
between a fluid and a solid: When  the density exceeds a certain value, the criti- 
cal di la tancy [14, 15], it is resistant to shear, like solids, while below this density 
it will "fluidify". This fluidified state can be ra ther  complex, specially in the 
presence of  density f luctuat ions and density gradients.  
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Particularly suited to study this fluidization is an experiment where sand is 
put on a loudspeaker or on a vibrating table [9 - 11, 16, 17]. Under gravity the 
sand jumps up and down and although kinetic energy is strongly dissipated, 
collisions among the grains reduce its density thereby allowing it to flow ("flu- 
idization"). Under certain circumstances flow between top and bottom can occur 
in form of convection cells as has been observed experimentally in the case of 
inhomogeneities in the amplitude of the vibration [18]. More striking is that  
sand spontaneously can form heaps [9 - 11] as first described already in 1831 
by Faraday. Also within these heaps convection occurs which might even be 
the motor for the heap formation: Inside the heap the sand rises, pops out at 
the top and then slides down on the surface. Usually these heaps have compli- 
cated shapes that  change in time and sometimes one also observes ripples and 
other regular structures on their surface [19]. When particles of different sizes 
but equal density are put on the vibrating plate the larger particles tend to rise 
and after some time one observes a segregation into regions with larger particles 
and regions with smaller particles. When the vibration of the plate also has a 
horizontal component the material will flow in one direction, a technique often 
used in powder transport.  

In order to formalize and quantify the complicated theology of granular media 
various at tempts have been made. Continuum equations of motion and a kinetic 
theory [3, 20], thermodynamic formulations [21 - 23], cellular automata [24-  26] 
and a random walk approach [27] have been proposed. But many of the above 
mentioned effects have so far eluded a satisfactory explanation of phenomena, 
like size segregation or density fluctuations. This is because it is very difficult to 
incorporate into these theories static friction, local rotations and other relevant 
microscopic mechanisms. 

To gain a better understanding of the theological effects of granular media 
it is therefore very useful to do computer simulations [28, 29]. For over a decade 
discrete methods have been used where instead of a continuum one treats the 
granular material as an assemblage of particles interacting through their con- 
tacts. This technique was introduced by Cundall[30] to study the motion of 
rock masses. Since then it has been applied to statistical micromechanics [31, 32], 
constitutive behavior of granular soils [33], creep of soils [34], analysis of rock- 
support interaction [35] and other applications of soil mechanics [36]. These tech- 
niques have also been applied to model size segregation [8, 37], outflow from a 
hopper [38, 39], shear flow [40] and flow down an inclined chute [41]. 

In the following we will discuss these techniques. In particular we will present 
Molecular Dynamics (MD) [42, 43] simulations of inelastic particles with an addi- 
tional shear friction. We present data in two dimensional systems for the onset of 
fluidization [44, 45] and give evidence for the occurrence of convection cells due to 
inhomogeneities in the vibration amplitude or due to walls [46, 47]. We also re- 
port on measurements of the velocity and density profiles of powder transported 
on a vibrating belt [48]. 

A series of experiments [12, 49 - 51] have given evidence for strong density 
fluctuations when granular material flows under the action of gravity. Baxter et 
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al [12] used X-rays to visualize these wave-like patterns emanating from the out- 
let of a two dimensional wedge-shaped hopper. Similarly rather erratic shock-like 
density waves have been observed in flow through pipes [52]. Another experi- 
mentally observed ubiquitous phenomenon in granular media seems to be 1 / f  ~ 

noise. Baxter [53] observed power law decay in the frequency dependent forces 
that  act on the wall of a hopper. For avalanches going down the slope of a sand 
pile theoretical considerations of self-organized criticality [54] led to the proposal 
that  their size and life time distributions were power laws which was in fact only 
verified experimentally on very small piles [55]. 

In this course I will show using four models of different degree of theoretical 
abstraction [25, 52, 56 - 58] that  the observed density patterns are composed of 
at least three different elements: (1) solitary waves of high density, similar to the 
kinematic waves of classical traffic jams, due to the concave density dependence 
of the flux, (2) low density waves due to the sharp increase of viscosity as function 
of.density and (3) a background with a power-law spectrum due to self-organized 
criticality in the avalanches occurring inside the material because of instabilities 
intrinsic to inelastically colliding particles. All three phenomena are eventually 
consequence of dissipation and compressibility. Interestingly the fluctuations in 
stresses against the walls which also have a power-law spectrum don't seem to 
be directly related to these density patterns [59]. 

Loose granular media can in fact be described by a thermodynamic formalism 
[21] in which sand grains are treated in a similar way as molecules in a gas. This 
analogy reminds us that  Molecular Dynamics was in fact originally developed to 
describe the motion of molecules. 

Granular media at large densities have their own universe of funny effects. 
We all know that  a packing of sand behaves like a solid when pushed but offers 
no resistance to pulling. Then there is the famous Reynold's experiment in which 
due to dilatancy a deformed elastic bag full of sand increases in volume when 
deformed. Another beach experiment [60] consists in making a sand tower having 
randomly spread inside some meters of fishing line. The tower withstands a 
considerable amount of pressure. Studying more in detail sound propagation in a 
granular packing shows a strong dependence of the wave velocity on pressure [61] 
and a subtle dependence of the local acceleration of a particle on the amplitude 
and the temperature due to the complex network that transmits the stresses. 
Large deformations of granular media occur on shear planes [62] due to a plastic 
instability [63]. 

In this course I will show results [64] of large scale MD (64.000 particles) 
simulations made on the CM-2 for the "mirage effect" of sound velocity and for 
standing waves in a rectangular box. In order to understand the formation of the 
fractal network of shear bands in a slowly deformed box I present results [65] 
from FLAC an explicit Lagrangian technique that. makes use of the classical 
non-associate Mohr-Coulomb plastic yield criterium that  is traditionally used as 
continuum theory for dense granular materials. 
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2. Molecular Dynamics Technique 

As opposed to usual molecular gases the elementary units of granular materi- 
als are mesoscopic grains consisting of many atoms each (1015 - 1025). When 
these objects interact (collide) the attractive potentials of the individual atoms 
are unimportant  and completely different mechanisms must be considered. It is 
important  that  on a microscopic scale the surface of the grains is rough. Solid 
friction is the immediate consequence: When two touching grains are at rest 
with respect to each other a finite force F~ is needed to trigger relative motion 
(static friction), while moving against each other a finite force Fd is needed to 
maintain the motion (dynamic friction). Fd < F~ and both only depend on the 
normal force and neither on the velocity nor on the area of contact (Coulomb 
law). No doubt, this picture is idealized and an entire discipline, called tribology, 
has evolved to s tudy solid friction in depth [66]. For our purpose it is, however, 
more convenient to 'concentra te  only on the basic mechanisms because we are 
interested in explaining the generic effects of granular rheology without entering 
into material-dependent details. Friction has a crucial consequence on the level 
of the grains, namely that  the system does not conserve energy as opposed to 
what happens on the molecular level. Another source of dissipation can be plas- 
tic deformation of grains due to the normal force acting at collisions. Again it 
seems most important  that  dissipation does occur due to the normal momen- 
tum and the complications arising from the non-linearities of plasticity seems 
less relevant. We will therefore in the following assume very simple dissipation 
laws. In fact more complicated laws have been used increasing the number of 
parameters without giving qualitatively different answers. 

Let us consider a system of N spherical particles of equal density and with di- 
ameters d chosen randomly from a homogeneous distribution of width w around 
do. When two particles i and j overlap (i.e. when their distance is smaller than 
the sum of their radia) three forces act on particle i: 

1) an elastic restoration force 

] P ri__j_j (2.1a) ~(~) = ~ - ~  L ~  I -l(d~ + dj) I~j  I 

where k~ is the elastic modulus (normalized by the mass), rn i o( d~ the mass 
of particle i and rij points from particle i to j .  For Hooke's law/3 = 1 but in 
the case of spheres in three dimensions one has to choose/3 = 3/2 [67] and for 
conical contacts one should take/3 = 2. 

2) a dissipation due to the inelasticity of the collision 

rij l 2 -Tm~v~ J d i s s  4:(i) -~ - - T n m i ( v i j  • r i j )  I r i j  ~- (2.1b) 

where 7n is a phenomenological dissipation coefficient and vlj = vi - v j  the 
relative velocity; 

3) a shear friction force which in its simplest from can be chosen as 
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= -7sm (v   • t j) I _ ( 2 . 2 a )  shear r i  j 12 - - T s m i V i j  , 

where 7s is the shear friction coefficient and tij is the vector vii rotated by 90 °. 
Eq. (2.2a) is a rather simplistic description of shear friction. In many applications 
(arching, heap formation) it is important to include real static friction [68] which 
can he done by a static friction force [31]: When two particles start  to touch each 
other, one puts a "virtual" spring between the contact points of the two particles. 
If 5s is the total shear displacement of this spring during the contact the restoring 
frictional force is ks 5s (static friction). The maximum value of the restoring force 
is then according to Coulomb's criterion proportional to the normal force F~ and 
the proportionality constant is the friction coefficient #. Cast into a formula this 
gives a friction force 

f(/)i¢tio~ : -s ign(  5s )min( k,Ss, p F,~ ) (2 .2b)  

where 6s is the shear displacement integrated over the entire collision time. When 
particles are no longer in contact with each other the spring is removed. Main 
source of static friction is the geometrical roughness of the surfaces [69] and the 
same effects of particle stopping can be obtained also without (2.2b) by using 
particles of complicated shapes, like crosses or polygons [70, 71]. 

It is not straightforward to implement the above technique when the particles 
are allowed to rotate, i.e. able to roll on each other. In fact, when particles have 
strong deviations from the spherical shape rotations are suppressed. Often it is 
however useful to go an intermediate way and to include dynamic friction but 
not static friction and allow for the particles to have rotations [8, 38, 40]. In that  
case one uses a combination of Eqs. (2.2a) and (2.2b): 

f(i) -min(%v~j, pF~) dyn "~ (z2 ) 

and also introduces equations of motion for the angular momentum of the par- 
ticles. 

When a particle collides with a wall the same forces act as if it would have 
encountered another particle of diameter do at the collision point. One force 
that  acts on all particles pulling them down is gravity, g ~ - 1 0 m / s  2. In most 
simulations presented here we use a fifth order predictor-corrector MD with 
103 - 105 iteration steps per cycle depending on the largest velocities appearing 
in the application. This algorithm vectorizes on the Cray-YMP, running at about 
10/~sec per particle-update for N = 200. The programs were also run on 8 or 16 
processors of an Intel iPSC/860 or on an IBM RS/6000. 
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3. Angle  of R e p o s e  and Angle  of  Marginal  Stabil i ty 

As opposed to fluids the surface of granular media at rest is usually not flat but 
can show undulations (ripples, dunes) or form mountains (sand piles, heaps). 
This is due to the fact that  up to a maximal angle, the so called angle of maximal 
stability 0,~, grains can arrange in a statically stable way. The angle of a heap 
of granular material can fluctuate between 0rn and a dynamic angle 0~. Various 
experiments can be deviced to obtain these angles. 

Numerical studies have been made to investigate the angles 0~ and 0,~ in 
two dimensions [68]. They start  by putting N particles randomly in a box and 
wait sufficiently long until under the action of gravity they have all settled on 
top of each other and come to rest. Next one side wall is removed. The particles 
violently fall out forming a big avalanche and after some time only a few remain 
inside the box. In Fig. 1 we see the pile that  is left. It forms a certain angle 
which is what is called the angle of repose 0~. 

Fig. 1. Static pile obtained after the right wall from the box was removed. The param- 
eters used are # = 0.2, kn = 106g/sec 2, k~ = 104g/sec 2, 7~ = 500 and 3~ = 5 (from 
Ref. [68]). 

In order to measure the angle 0r from Fig. 1 one can divide the box into 
several vertical cells and for each cell find the highest position of the particles 
inside this cell. The line joining these positions can be considered as the surface 
of the pile. Next there are different ways to measure the slope: Either by joining 
the two end points, or by fitting a straight line through the points of the surface 
by linear regression, or by fitting a parabola through the cummulated values of 
the surface, etc. All definitions are slightly different but should give the same 
result for large enough systems. 



Granular Media 73 

In principle the static friction coefficient # defined in (2.2c) should determine 
the slope of the pile. Since the angle of repose can easily be determined experi- 
mentally it is of interest to find the relation between 0r and p. In Fig. 2 we see 
that  this relation is essentially linear for tt < 0.2. Recently [72] in fact these cal- 
culations have been extended to larger values of It and a curvature was observed 
which is close but not identical to the theoretical relation It -- tanOr. For the 
range of parameters which interest in practice, however, the linear relation is a 
very good fit. 
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Fig. 2. Angle of repose 8,. as a function of # for the same parameters as in Fig. 1 (from 
Ref. [68]. 

A method to obtain also the angle of maximal stability 0m is the follow- 
ing [68]: Consider an empty box without a right wall and glue one layer ~of 
particles on the bottom. One monitors the largest velocity of the particles and 
each time this value falls below a sufficiently small value v,~a,, one inserts a new 
particle at the upper left corner of the box. This corresponds to experiments 
that  have been used to measure avalanche statistics of small sand piles [55]. In 
Fig. 3 we show the angle as a function of time for very small piles. As predicted 
by the experiments [55] for such small piles the fluctuations of the angle are very 
large. 

4 .  S i m u l a t i n g  G r a n u l a r  M e d i a  o n  a V i b r a t i n g  P l a t e  

Let us now consider that  the particles are placed into a container of length L 
that  is open on the top and has either periodic boundary conditions or fixed 
walls in the horizontal direction. The bot tom of the container is subjected to a 
vibrating motion described by: 
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Fig. 3. Angle of the pile made by adding particles one by one as function of time 
(measured in MD-iterations). The dotted lines indicate the characteristic width of the 
fluctuations. The width of box is only four particle diameters, v,,~x = 0.1 and all the 
other parameters are the same as in Fig. 1 (from Ref. [68]). 

zo(t) = A(x)sin(2~rft)  , (3.1a) 

f being the frequency and ampli tude A. In some cases we will also consider an 
explicit spatial  modulat ion of A of the form 

d ( x )  -- A0(1 - Bcos(2~rx/L)) (3.1b) 

For vibrat ing conveyor belts this plate undergoes harmonic oscillations in both  
horizontal (x) and vertical (z) directions according to 

x(t)  = A~ sin(2~rft) and z(t)  = d~ sin(2~rft) (3.2) 

where f is the frequency and A~ and A~ are the amplitudes in x and z di- 
rections, respectively. The corresponding angle of the composed oscillation is 

= arctan(A~/A~).  
Various initiM positions of the particles can be considered: They  can for 

instance be placed regularly on the bo t tom of the container or put at r andom 
positions inside a space several times as high as the dense packing. The initial 
velocities are either zero or randomly chosen. After that  the particles are allowed 
to fall freely under gravity and relax for a t ime tha t  corresponds to ten or 
twenty cycles of the vibration. The displacements, velocities and energies are 
then measured by averaging over up to 200 cycles. 

Cl@ment et al. [16] reported experimental  observations of a "fluidized" state 
in a 2D vertical packing of steel spheres submit ted to vertical vibrations. They  
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periodically shake (at f = 20Hz) 300 steel beads inside a trapezoidal cell with 
side walls tilted by 30 ° with respect to the vertical axis. Positions and velocities 
of the particles were obtained by photographing the system periodically and 
then averaging over 15 snapshots taken at a given constant phase 9- Velocities 
were obtained from averages over a time interval 1" around the phase 9. From 
a plot of the density of particles they argued fluidization to occur in the upper 
region of the packing. They found that the mean density does not depend on the 
phase of the vibration, implying the appearance of a steady state preserving the 
density profile at all times, independent of the up and down collective motion. 
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Fig. 4. Local density, normalized by the solid density, as a function of the height z 
for different phases of the vibration for A ---- 2.5, f = 20 Hz averaging over 30 shaking 
cycles after having discarded 30 cycles in order to reach steady state; (a) experiment 
of Ref. [16] and (b) simulation of Ref. [44]. 

Simulations of precisely the same geometry and number of particles as in 
the experiment have been performed [44] using the MD technique described in 
section 2 with the simplest type of friction, namely that  of (2.2a). Fig. 4 shows 
local densities along the z-axis, evaluated at different phases as described in the 
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experimental  paper: (a) is the experiment [16] and (b) the simulation [44]. The 
numerical curves were obtained by averaging the local density over the 15 ms 
following each phase ~ and over 30 shaking cycles after discarding 30 "transient" 
cycles. As can be seen from this figure, the model correctly reproduces the ex- 
perimental  behavior of the beads, producing the same &independent ,  smoothly 
varying density profile as function of the height z. To check whether the present 
model is at all able to display a transition from a solid- to a fluid-like s tate  both 
frequency f and ampli tude A of the oscillations were varied. The t ra jectory of 
a selected "tracer" particle was monitored [44]. In the solid-like case the tracer 
particle remains confined to a very small region while in the fluid-like case the 
t ra jectory seems to explore the entire box. It  is important  to note tha t  both  
situations can occur for the same value of A f  2 which means tha t  even close to 
the onset of fluidization A f  ~ is not a good scaling variable. It has in fact been 
shown [45] tha t  in the fully fluidized regime the data can be scaled with the 
energy ( ( A I )  2 in one and (A f )  3/2 in two dimensions). 

Fig. 5. Displacement of the particles after 15 cycles for f = 70Hz using 200 particles in 
a box with periodic boundary conditions of size L/do = 20 with A0 = 1.5d0, B = 0.5, 
w = 0, k~ = 5000/d0, 7~ = 20g, % = 200g/f, do = lmm (from Ref. [47]). 

Let us next consider the case of a spatial modulation in the ampli tude of the 
vibration, i.e. B • 0 in (3.1b), using periodic boundary conditions [47] and again 
a friction given by (2.2a). In Fig. 5 we see the displacements of the particles after 
15 cycles for B = 0.5. Clearly the particles flow upwards in the center where the 
ampli tude of the vibrat ion is larger and form two convection cells. If  the dissi- 
pation coefficient 7n is increased by a factor of ten the convection is completely 
suppressed while it is quite insensitive to %, even if % = 0. The elastic modulus 
also has only a very weak influence as long as it remains larger than lOag/sec 2. 
The initial condition plays no noticeable effect showing that  convection is no 
transient effect. The polydispersity w of the particles only slightly distorts the 
shape of the convection cells. 
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The strength of the convection was measured quantitatively by recording 
the average vertical components of the velocities of the particles in the center 
and at the edges. These quantities have also been measured experimentally by 
R~tkai [18]. The strongest convection for the aforementioned parameters  is ob- 
tained around 60 Hz and it increases dramatically with the amplitude A0 as was 
also seen in the experiment [18]. This resonance seems to be the driving force of 
the convective motion. 

i I 

.IIVv, ., //) I lff 

Fig. 6. Displacements after 10 cycles in a system with fixed vertical walls for B = 0, 
w = 0.5, k,~ = 5000g/sec 2, f = 20Hz, N = 400, L = 40do, Ao = 3.0do, do = lmm, 
7= -- 80g, % -- 0 averaged over 10 cycles. 

A completely different type of convection can be caused by the existence.of 
fixed vertical walls without any modulation of the amplitude [47], i.e. for B = 0. 
One sees in Fig. 6 for 7., = 0 convection cells where the motion of the particles 
at the wall is upward. On the other hand, when % ~ 0 there is a very strong 
downward drag at each wall giving rise to a convection in the opposite sense. The 
two convection cells remain attached to the walls showing tha t  the walls are at 
the origin of these cells. One also recognizes a slight heap formation close to the 
wall which might be a first sign of the sand heaps discovered by Faraday [9-11] .  

Let us analyze the origin of the convection due to fixed vertical walls. In the 
case of no shear friction the vertical walls do not transfer any vibrating motion 
of the container but represent only a steric hindrance to the flow. In this case, 
the following scenario applies: When, after levitating from the plate, the packing 
falls back on the bo t tom of the container only the horizontal component of the 
velocities of the particles arriving first will survive collisions with the downwards 
vertical motion of the rest of the packing that  follows behind. So flow parallel 
to the bo t tom plate will spontaneously appear and is reinforced at each cycle. 
This parallel flow will only survive in regions where it is coherent and the size 



78 H.J. Herrmann 

of these regions will grow due to the reinforcement.  When  one of these regions 
collides with a vertical wall the flow must  go upwards since it cannot  go anywhere  
else. This explains not  only the or ientat ion of the convection but  also why the 
convection cells are a t tached to the walls as seen in Fig. 6. The  driving force for 
these cells are therefore the horizontal  flows along the b o t t o m  plate. 
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Fig.  7. Trajectories of the particles in steady state during one single cycle• The position 
of each particle is plotted after every 50 time-steps. The plots were obtained for A z  = 

d o ,  c~ = r / 4 ,  ~ = % = 50g and (a) f = 10 Hz and (b) f -~ 80 Hz, top and bottom 
respectively. 

W h e n  shear friction with the wall is present a different mechanism sets in: 
While the particles are pushed up and s tar t  to  levitate, the packing is still quite 
compressed and a s t rong pressure is exerted on the walls giving rise to  s t rong 
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Fig. 8. Trajectories of the particles flowing in the presence of an obstacle for Az = do, 
c~ = 7r/4, 7~ = % = 50g. The frequency was 80 Hz. The obstacle of diameter d l /do  = 

1.5 is given by the full circle. 

shear friction while the relative motion of the particles with respect to the walls 
is upward. When afterwards the particles fall back and have downward relative 
motion with respect to the wall the packing is much looser and the shear friction 
much less efficient. Therefore the upward motion of the particles with respect to 
the wall is slowed down stronger, resulting in a net down drag along the wall. 
If 7= is strong enough this effect can overcome the effect described in the above 
paragraph and the convection can reverse its orientation. 

Let us next discuss the behavior of vibrating conveyor belts [48], i.e. granular 
material under harmonic vibrations having a given angle with respect to the 
direction of gravity as described in (3.2). Vibrating conveyor belts as a means 
of transportat ion are very typical for granular media, since neither solids nor 
fluids can be moved on them and are used for instance in the pharmaceutical 
industry to transport  pills [73]. Let us consider the trajectories of the particles 
during one cycle of shaking. When the frequency is low enough all the beads 
move synchronously along elliptic trajectories curves as shown in Fig. 7a. The 
tilting angle of these ellipses increases with the angle of vibrations. For smaller 
shear friction coefficients % the tilting angle tends to ~r/2, provided the vibration 
frequency is low enough. When the beads start  to flow, the character of their 
trajectories changes: at not too high frequencies they move along sinusoidal. 
With increasing frequency, the trajectories become flatter and at the highest 
frequencies we observe a nearly horizontal flow (see Fig. 7b). A decrease of the 
vibration angle makes the horizontal motion more pronounced. A similar effect 
occurs when the friction coefficients are increased. For vanishing shear friction 
% the beads move essentially vertically. 
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It is also interesting to check how a circular obstacle inserted into the system 
influences the flow. To this end, a fixed circular body can be inserted at Xl -= L/2, 
zl -= A~. The diameter of this obstacle has  been varied from dl = 0.1d0 to 
dl = 2.5d0. The parameters characterizing the interactions of the obstacle with 
the particles are the same as in the case of particle-particle interactions. Note 
that  due to the periodic boundary conditions, the obstacle is repeated along the 
belt. Even the presence of a rather small obstacle rapidly slows down the flow. In 
Fig. 8 we see the trajectories of the particles for an obstacle of dl = 1.5d0. Figs. 7b 
and 8 have the same parameters so that  without the obstacle Fig. 8 would look 
like Fig. 7b. Clearly the presence of the obstacle changes the trajectories of 
all the particles considerably. So, we cannot t reat  the obstacle as only locally 
influencing the flow, because the stiff repulsion between particles generates long- 
range correlations. 

5. Simulating Size Segregation 

One of the most puzzling phenomena encountered in granular mat ter  is size 
segregation: When a mixture of grains of the same material (equal density) 
but different size is shaken in a container the larger particles rise to the top. 
This effect has been extensively studied experimentally [5, 74, 75] and has much 
importance in numerous industrial processes [76]. Recently this so called "Brazil 
nut effect" has at t racted much interest among physicists [2]. 

Size segregation inevitably seems to contradict equilibrium statistical me- 
chanics since the density of the overall packing increases with polydispersivity 
and so gravity makes situations with larger particles on the bot tom energet- 
ically more favorable. Rosato et al. [6] proposed a Monte Carlo algorithm and 
put forward a kinetic argument to explain segregation using the fact that  smaller 
particles are more mobile. In the same year Haft and Werner [8] did Molecular 
Dynamics simulations of rather small systems and claimed that  segregation was 
essentially a consequence of solid friction and the rotation of the particles. Jul- 
lien et al. [7] used a piling technique which is non-stochastic as compared to the 
one of Ref. [6] and found a critical ratio T¢ for the radia of spherical particles 
below which no segregation occurs. Based on these ideas Duran et al. [77] for- 
mulated a geometrical theory for segregation in which the small particles glide 
down along the surface of the larger particle, the critical ratio 7¢ of radia being 
between continuous and discontinuous gliding. They also claimed experimental 
evidence for two types of dynamics and visualized the discontinuous ascent of 
the larger particle through stroboscopic photos. Jullien et al. [78] reproduced the 
discontinuous dynamics by including horizontal random fluctuations into their 
model. 

Parallel to these local theories there has been the "convection connection": 
It is known experimentally [18] and numerically [46, 47] that  shaken assemblies 
of spheres form convection rolls which are attached to the walls of the container. 
For weak shaking the convection rolls only appear on the surface. Knight et 
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al. [79] showed experimentally that  segregation was due to this convection and 
the fact that  larger particles have a harder time entering again into the bulk 
once they are on the surface. They also verified an exponential decay of the 
convection strength as function of depth for weak shaking [80]. Duran et al. [81] 
verified segregation due to convection in two dimensions for strong shaking and 
claimed that  above mentioned local mechanisms are at work at weak shaking. 
Their stroboscopic pictures showed convection cells above the particles. 

Large scale Molecular Dynamics simulations show [37] that  also for weak 
shaking convection is responsible for segregation but in a more intricate way: 
Under certain conditions the larger particle is able to pull down the convection 
rolls due to the more efficient momentum transfer and then rise within its flow. 
Because of the exponential decay of convection with depth the ability to rise 
critically depends on the vertical position of the larger particles. 

• Throughout  the .simulation the parameters were k~ = 3.106 g/see 2 (elastic 
modulus), 7N = 100 Hz, 7s = 1 Hz (phenomenological normal and shear 
friction coefficients) and # = 0.5 (Coulomb friction parameter). We considered 
N = 950 particles were considered with diameters uniformly distributed in the 
interval dl E [1.7,2.3] cm and with masses rn~ = 2~rR~p, p = 1 g/cm 2. The 
particles are put into a two-dimensional box having walls made of particles with 
the same material characteristics as the grains and which vibrates vertically 
according to zo(t) = A .  sin(2~rft) with A = 2 cm. Gravity acts in negative 
z-direction F[r = - rn i  g, g = 981crn/sec 2. The time step for the numerical 
integration of the Gear predictor-correetor scheme of 5th order was At = 5 • 
lO-Ssee° 

Segregation and convection behavior have been investigated [37] as function 
of the vibration frequency f in two different systems, either all particles are small 
or we add one single big particle of radius R1 = 4 cm located in the center of the 
box close to the bottom. In order to investigate closer what happens at the onset 
of segregation we keep all the other parameters fixed. Fig. 9 shows the convection 
cells without the larger particle (left) and with the larger particle (right) for the 
frequency f = 2.8 Hz, i.e. at the onset of segregation. The convection cells with 
and without the big particle, differ significantly while they are quite similar for 
larger or smaller frequencies. This indicates that  at the onset the presence of 
the big sphere triggers the onset of convection which finally leads to segregation. 
Indeed we find that  convection is always present when segregation happens. 
It is important  to note that  if one is close enough to the onset of segregation 
just putting the larger particles one row lower can entirely suppress the effect 
of segregation. This dependence of segregation on the height is quite strong 
and has not been discussed in the literature. By changing the frequency f very 
slowly and measuring the convection flow through a plane at a certain height 
we observed that  the transition from the fluctuation regime to the convection 
regime is very sharp within the numerical precision ( A f  = 0.05 Hz).  Moreover, 
when increasing the frequency the transition occurs almost exactly at the same 
frequency as when decreasing the frequency, i.e. there is no hysteresis. 
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Fig. 9. Convection rolls in systems without (left) and with the larger particle (right) 
for f = 2.8 Hz. The big particle triggers convection rolls. The velocities were obtained 
by averaging over 50 shaking periods of the box (from Ref. [37]). 

The triggering of convection cells by the big particle is investigated more 
quantitatively by calculating the convective flux • defined as the sum of material 
(mass) flow in the center of the box jtop and the flow close to the walls jbot by 
considering that  these flows have opposite signs. The flows jtop and jbot are 
defined by adding the number of particles which move in one direction minus 
the ones moving in the opposite direction and is measured in particles per cycle 
time. In fact we measure for each particle if the positions at subsequent nodes 
of the vibration are on different sides of a height line, where the height of the 
box was divided into 80 height lines between the bot tom of the box and the 
surface of the packing. Fig. 10 shows the convective flux ~ through planes at 
different heights D for both systems and for the three different frequencies. For 
f = 2.6 H z  we find almost no directed flow but only fluctuations. For f = 3 H z  
both systems, with and without large particle, behave similarly, as could also be 
observed in Fig. 9. For f = 2.8 Hz,  however, the convection cells clearly extend 
deeper due to the existence of the larger particle. Apparently the larger particle 
is able to pull the convection cells down. 

This effect can be explained by the fact that  in the region around the large 
particle the accelerations are higher since the momentum is transferred with less 
dissipative loss through the larger particle than through a corresponding pile 
of smaller particles of the same volume. We measured the sum of the absolute 
values of the forces of all the particles in a region around the position of the 
large particle and averaged it over time. The region was ring shaped with the 
inner border of radius 4.5 cm and the outer border of radius 8 cm. At the onset 
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Fig. 10. Strength of the convection rolls measured through the flux ~ as a function 
of the height D, f = 2.6 Hz (upper left figure), f = 2.8 Hz (upper right figure) and 
f = 3 Hz  (lower figure). The height D is measured such that the bottom is at the origin 
of the axis. The flux • is measured in units of particles per period. In the central case 
the convection rolls are stronger and reach deeper inside the material in the presence 
of the big particle. This triggered convection roll catches the big particle and forces it 
to rise to the top. (from Ref. [37]) 

of segregation ( f  = 2.8 H z )  the average force of the small particles around the 
large particle is about 15% larger than that  of the small particles in the same 
region in a system containing no large particle. This effect is strongest in the 
lower part of the ring shaped region. For f = 2.6 H z  the difference is only 5%. 
Therefore the accelerations in the region around a large particle are larger than 
if no particle would be present. We believe that  this increase in high frequency 
oscillations is responsible for pulling the convection rolls down. It is, however, 
interesting to note that  the granular temperatures (kinetic energy) in this region 
is roughly the same in the two systems. 

One can see from Fig. 9 that  the convection cells decay very sharply in 
strength but that  even in the deep regions some essentially horizontal motion 
occurs. This is reminiscent of the stroboscopic pictures of [81] implying that  even 
in the low acceleration regime some particles move inward horizontally. Within 
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our framework this motion could be interpreted as the exponentially weak tail 
of the convection rolls. 

Next we investigated the dependence of the onset of convection on the ratio 
of radia ~ .  Note that  in our case Tt = R 1 / l c m  because the mean radius of 
the small particles is lcm.  For f -- 3.2 H z  we observed a big particle of radius 
T~ = 4.0 moving up immediately. We also studied the cases T~ = 3.5, T~ = 3.0, 
T~ = 2.5 and T~ = 2.0. In these cases the large particle remains a certain waiting 
time on the bot tom before it suddenly moves up quite rapidly. Fig. 11 shows 
a typical evolution of the vertical position of the big particle with T~ = 2. The 
waiting times do not noticeably depend on T~ being of the order of 30 sec. Once 
the large particle comes to the top it performs an oscillating motion going up 
and down (whale effect) that  has also been observed experimentally [82]. This 
motion seems due to the convection rolls: In the case where T~ is smaller the 
oscillating motion is more regular because the larger particle has less difficulty 
reentering into the bulk from the surface and follow the convective motion. For 
larger T~ the larger particle has more difficulty reentering thus leading to a more 
erratic horizontal motion. Particles with smaller 7~ also seem to dip deeper into 
the bulk showing that  the convection cells can move them more efficiently. 
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Fig. 11. Evolution of the vertical position of the big particle as function of time, 
7~ = 2.0 for f = 3.2 H z  (from Ref. [37]). 

Concluding, it seems that  segregation of granular media in a vibrating box 
in two dimensions is intimately connected to convection. The larger particles, 
surrounded by a region of higher acceleration, loosen the material thus deepening 
the penetration of the convection rolls from the top into the medium. After some 
waiting time the larger particles are caught by the lower part of the rolls and 
pulled up. This triggering effect is only relevant close to  the characteristic onset 
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frequency of segregation which is sharply defined and strongly dependent on 
the initial depth of the large particle. Once the large particle is on the top it 
periodically goes up and down (whale effect) driven by the convection cells. 

In addition to convection arching and geometry are also important as 
pointed out by many authors. How the large particles move in the exponen- 
tially weak convection field before being lifted upwards and the T~-dependence 
of the mobility are probably best described by Duran et al.'s local arching 
mechanisms [77, 81]. The fact that the whale effect of larger particles is less pro- 
nounced is certainly due to their lower mobility because ofsteric hindrance effects 
as formulated by Rosato et al. [6]. 

Many of the details of segregation are still not completely clear and in par- 
ticular in three dimensions additional geometrical effects might play a role. This 
as well as other questions are difficult to study conclusively with a numerical 
technique due to the excessive requirements in computer time. It would for in- 
stance be interesting to see what happens when the box is so wide that the walls 
of the box are much farther away from the large particle than the height of the 
packing. In this experimentally relevant case the walls would not be able to sta- 
bilize the convection rolls. Simulations with periodic boundary conditions have, 
however, provided rather similar results as with fixed boundaries [83]. It would 
also be interesting to study larger ratios T~ in order to verify predictions made 
about a characteristic value of 7~ = 12 [7, 77] but for that case one would need 
to consider substantially larger systems. Three dimensional calculations have 
been made [83] but there the length scales are even smaller. The limitations in 
observation time due to the computational requirements also puts limits on the 
determination of the segregation velocity and we cannot exclude that particles 
rise on time scales much larger than the ones accessible numerically. 

6. S i m u l a t i n g  t h e  F l o w T h r o u g h  H o p p e r s  a n d  P i p e s  

The outflow of granular materials from hoppers and silos is an important tech- 
nological problem although it seems to be so commonplace and low-tech. After 
many years of uninterrupted service a silo might one day suddenly succumb 
under a "siloquake" or similar shock phenomena of surprising violence causing 
considerable harm. In fact silos and similar recipients are by orders of magni- 
tude the industrial structures most susceptible to collapse. The reason for these 
catastrophic events are that the forces exerted by the flowing granular material 
against the wall of the container can fluctuate in magnitude by many orders. 

Using similar techniques as in the last section but including the Coulomb 
(dynamic) friction of (2.2c) and rotations of particles as in Ref. [8] simulations 
were made for the flow out of a hopper [38, 56] and flow through a pipe [52]. 

The simulations for the flow out of a hopper [38] find the existence of a 
minimal outlet diameter below which clogging occurs due to arching which is 
larger for equal sized particles than for randomly distributed radia. In fact the 
theology of the particles is very different when they are monodisperse: For a 
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random distribution of radia the acceleration occurs on a ramified structure that  
has strong temporal  fluctuations. Particles of equal size form regular, crystal-like 
domains and the motion occurs between the blocks. This bloc motion has been 
described in detail in the experiments of Drake [84]. 
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Fig. 12. Vertical pipe plotted at regular time steps next to each other. Time goes from 
left to right. Gravity acts from top to bottom. For more details see Ref. [52]. 

In Fig. 12 we see a space-time diagram of the density inside a pipe with 
600 particles and periodic boundary  conditions. The particles initially have ran- 
dornly distr ibuted initial positions and velocities (left pipe). After some t ime 
spontaneously various pat terns  appear  in the density: On one hand one has very 
dark regions, nearly constant in time. Then one sees black diagonal stripes of 
constant velocity down the pipe. Finally there are also some lighter horizontal 
lines. In the following we want to t ry  to explain these rather complex structures. 

Similar effects have also been observed in hoppers of opening angles of 0 = 300 
and the density at a position six particles diameters above the outlet has been 
measured as a function of t ime [56]. In Fig. 13 we see the Fourier t ransformation 
of this density in a log-log plot. Clearly the data  fall on a straight line over nearly 
two decades. The slope is about  a = -1 .35  + 0.1 obtained by a least square fit. 
Tha t  means tha t  we have a power law spect rum of the form 1If ~. 

When particles of equal size are taken we observed equally well developed 
density pat terns  and find roughly the same power law decay of the spectrum. 
The effect is reduced when the diameter D of the outlet becomes too large. If 
it is too small the flow of particles can entirely stop due to arching. The critical 
diameter  Do when this arching sets in has been studied before with similar 
techniques [38] where it was found tha t  Do is larger when the particles have the 
same size. When we consider smooth walls, i.e. all wall particles having the same 
radii, we do not find density waves and the power spec t rum looks significantly 
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Fig. 13. Log-log plot of the spectrum of the density fluctuations in a hopper [56].The 
elastic modulus is k,~ = 106g/s 2 and the time step At = 2.10-4sec. 

different. It shows an upwards curved slope with increasing frequency which one 
also finds when configurations block during the outflow. A similar effect was also 
found in simulations of flow on an inclined plane [41]. 

Baxter et al. [53] also measured the stresses acting on the walls of a three 
dimensional hopper with an opening angle of 450 during the outflow of sand. 
They observed a power law decay in the spectrum of the time dependence of the 
normal stress (pressure) where the exponent strongly depended on the run. 

The stresses acting against the walls have been measured [59] by taking 
from our algorithm the normal p and tangential T components of the force act- 
ing against each of the particles of the walls and monitor the t ime dependence 
of the stresses at a given position on the wall. The fluctuations of the first in- 
variant of the stress tensor, defined as V /~  + ~-2, are of the same order as the 
values themselves. No apparent  correlations are visible. In order to get a more 
quantitat ive information we show in Fig. 14 the power spectrum of these time 
sequences, i.e. we took the square of the amplitude of its Fourier t ransforma- 
tion. For sufficiently open hoppers, like for O = 55 °, the spect rum decays with a 
power law over at least one order of magnitude with an exponent of about  1.3. 
This is in very good agreement with the experimental  results of Baxter  et al. [53] 
which worked at the same opening angle; (they define the angle as 900 - ~) .  
Their power law, however, extends over a much larger range than in the simu- 
lation because the computer requirements limit the observation times to several 
minutes while the real experiments can be carried out over many hours. 
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Fig. 14. Log-log plot of the power spectrum of the stresses for (9 -= 60 °. The upper 
curve corresponds to the shear stress and the lower curve to the pressure. The slopes 
are -1.4 (top) and -1.7 (bottom). The opening had a diameter of ten particles. 

It  is very interesting to note tha t  if the hopper walls become more inclined 
the spec t rum changes abrupt ly  and becomes white noise. Savage [85] found a 
similar situation in numerical calculations of the wall stresses in shear cells as 
function of density: Only at rather high densities the power spec t rum showed a 
power law while for lower densities he observed white noise. In our case although 
the density cannot be varied a change in the opening angle determines if there 
are stagnation zones or not and evidently the density in the flowing regions is 
lower than in stagnations zones. 

The observed shapes of s tagnatio n zones in real three dimensional silos are 
curved, either cusplike downwards for pr imary flow or S-shaped for secondary 
flow [86]. Indeed the shape of the stagnation zone as found numerically become 
S-shaped after some transient time. Only close to the outlet the shape remains 
linear. The acceleration zones inside the flowing par t  have elliptic shape also in 
agreement with the observations of the inner core of the flow [86]. It seems tha t  
the fact tha t  these observations were made on three dimensional hoppers while 
the numerical simulations are two dimensional (with exception of the Hertzian 
contact law) does not influence the qualitative picture very much. 

It  is interesting to see how the shape of the stagnation zone depends on the 
opening angle of the hopper  6). For tha t  sake also the case 69 = 0, i.e. a box 
with a flat bo t t om was simulated. In this case the S-shape of the stagnation zone 
reaches down to the edge of the outlet in even closer agreelnent with the typical 
observations. 

Investigating with large scale MD simulations the force distribution and the 
shape of the s tagnat ion zones of outflowing hoppers one therefore has an interest- 
ing dependence on the opening angle: In the case of funnel flow (69 = 75 °) there 
are no stagnation zones and the power spect rum of the stresses against the walls 
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has white noise. Opening the angle one finds stagnation zones and a power law 
spectrum. This leads one to suspect that  the power law in the stress spectrum 
does not originate from the power law in the density fluctuations [12, 56] because 
the density fluctuations also follow a power spectrum in the case of funnel flow. 
It seems more likely that  the stagnation zones act like "noise transformers" in 
which essentially uncorrelated random kicks coming from the outflowing core are 
transmitted through the complex contact network to the wall and arrive power- 
law correlated. Similar observations have been made with the propagation of 
shock and sound waves in dense packed boxes [13]. 

7 .  T r a f f i c  M o d e l s  

We have shown that  similar to the avalanches that  one observes on the sur- 
face of a sand pile also inside the bulk of granular material one has avalanche 
behavior which like the ones on the surface shows self-organized criticality on 
small scales [54]. The mechanisms that generate the patterns are similar but 
not identical to the original sandpile models. While the static friction similarly 
generates waiting times with a threshold it is not the motion of the sand itself 
that constitutes the avalanches but it is the group velocity of the holes between 
them: An individual particle can easily go from one dense region to the other 
by flying fast through a region of low density. There is therefore a backflow of 
information similar to the jamming on highways [87]. 

Everybody knows of the seemingly erratic motions of cars jammed on high- 
ways. One wonders whether they are due to a random behavior of the individual 
drivers or if there is an intrinsic chaotic mechanism. In favor of the first hy- 
pothesis is the existence of regular kinematic waves in dissipative systems with 
excluded volume [88]. For this reason many traffic models include rather impor- 
tant statistical noise in time [87]. In favor of the second hypothesis are measure- 
ments performed on Japanese highways showing a 1/f spectrum in the Fourier 
transformed density fluctuations [89] which might stem from some self-organized 
criticality [54]. It is therefore interesting to see if a traffic model without noise 
is able to give the observed erratic behavior and its 1/f spectrum. 

In Ref. [57] we consider a continuous one-dimensional model. The system has 
length L with periodic boundary conditions; and the velocity v~ and position x/ 
of a vehicle i are continuous variables. The update rule is defined as follows: 

• If the velocity is high with respect to the gap, then the car slows down: 

if v > Am - c~ => v ---+ max(O, Am - 1 ) ; (7.1a) 

(the "max" is only necessary to prevent negative velocities); 
• else if the velocity is low with respect to the gap and slower than five, then 

the car accelerates: 

if v < A x - / 3  and v<v ,~a~  =:> v - - + v + m i n ( 1 , T * A x ) .  (7.1b) 
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Arbi t rar i ly  one can choose the m a x i m um  velocity to  be v , ~  = 5 so tha t  
this rule allows m a x i m u m  speeds up to nearly six. 

• After the  velocity has been upda ted  for all vehicles according to the last 
two rules, we move all vehicles s imultaneously by a distance equal to their 
velocities. 

In Ref [57] initially N = [p. L] vehicles were placed on equally spaced sites 
1 to N,  all with veloci ty zero, where the  to ta l  number  of cars p was chosen 
small enough to prevent  the first car hi t t ing the  last one th rough  the periodic 
b o u n d a r y  conditions.  S tar t ing  fl 'om this to ta l ly  ordered initial state,  the  sys tem 
is allowed to evolve according to the  above rules, with the restriction tha t  the 
first vehicle has a speed kept fixed at vz~d -- 4.99999. This is a simplification 
of the well known s i tuat ion where fast vehicles follow a slower one which they  
cannot  pass. 
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Fig. 15. Left: First 4200 time steps (from top to bottom) and flow of N = 61 cars from 
left to right on a lane of length L = 1024. Right: Distribution n(r) of times r between 
consecutive breaking events for N = 190 and N = 1900 cars; c~ = 0.5, fl = 3.0, and 
7 = 0.1 (from Ref. [57]). 

In Fig.15(left) we see the  t ime evolution of a sys tem which has been trans-  
formed to the coordinates  of the first vehicle, i.e. the positions of all cars are 
given relative to the first car. We see tha t  equally spaced cars rapidly evolve into 
a f luctuat ing s ta te  (right hand  side). In this new state density increases give rise 
to very short  bursts  (traffic jams) of very different sizes which redistr ibute the 
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cars backwards such that  in some cases they even start  again in equally spaced 
patterns. 

In order to ensure that  this behavior is an intrinsic consequence of the dy- 
namics and not just the enhancement of numerical round-off errors, single pre- 
cision and double precision calculations have been compared to each other. The 
behavior of the model (i.e. the formation of the collective shocks) is robust 
with respect to parameter changes. More precisely, no qualitatively different 
behavior for changes of the parameters c~, /3, 7, and Vlead has been observed 
within the  following range 0.1 < c~ < 0.6, 2.0 5 /7 _< 5.0, 0.08 < 7 -< 0.12, 
4.5 _< vz~ad < 4.99999. 

One can also measure the distribution of times r between consecutive "brak- 
ing" events for the last vehicle ( r  counts the time from the end of one braking 
to the beginning of the next). Braking is defined as a slowing down according to 
the rules for the velocity update. 

For N = 1900 vehicles, after about 3 • 10 ~ time steps to let the transients 
die out the distribution of r was measured during about 1.1 - 106 further time 
steps. As seen in Fig. 15b, this distribution displays a remarkable straight line 
on a log-log plot, fulfilling a power law relation 

(7.2) 

with a = -2 .2  4- 0.1. This is an indication for the existence of self-organized 
criticality [54]. 

Many aspects of this model are remiscent of the so-called train model for 
earthquake dynamics [90]. Instead of pulling at one end, the slower car may be 
seen as pushing against the other cars which want to move faster. This leads 
to a slowly increasing average density, and at some time this density locally 
exceeds a critical threshold. The reaction is a more or less drastic slowing down 
of the corresponding vehicle, which may or may not force the next vehicle to slow 
down as well. By this mechanism, avalanches of all sizes are generated, which 
may propagate through the entire traffic jam. 

8. Latt ice  Gas and B o l t z m a n n  Latt ice  Mode l s  

It seems natural to describe the flow of granular media using the concepts of fluid 
mechanics. One must, however, consider that as opposed to classical fluids there 
is local dissipation of energy. Taking into account the dissipation rate in the 
energy balance equations it has been possible [91, 92] to predict the existence 
of an instability: Slightly denser regions have more dissipation and therefore 
lower pressure which itself generates a flow that  will enhance the density. So, 
the dissipation will be responsible for the formation of clusters of high density 
and these have been observed [91]. Also has it been possible to derive from this 
kinetic gas theory [92 - 94] that  the viscosity increases very sharply with density. 

One alternative to the direct solution of the equations of motion of fluids are 
the so called Lattice Gas (LG) [95] Lattice Boltzmann Models (LBM) [96]. These 
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models are defined on a lattice with velocity vectors that  can only point into few 
discrete directions and all have the same length. For the LBM this simplification 
is somewhat compensated by the fact that  on each site one has more real degrees 
of freedom (six on a triangular lattice) than in the classical numerical techniques 
allowing for the definition of a local shear or a local rotation. 

Let us first describe the Lattice Boltzmann Model as used in Ref. [58]. We 
consider a triangular lattice, and on each site x we have six real variables Ni(x, t), 
i = 1, ..6, representing (counted counter clockwise) the densities of the particles 
going in the direction i of the lattice. (For convenience we will in the following 
omit the site index x and denote by N~ the value of the particle density after 
collision.) One updating of the system ( t -+ t + 1 ) is given by two steps: (1) 
The collision step at which the six Ni are updated at each site through 

N'  = N~ + ~(N~ - N:  q) (8.1) 

and (2) the propagation step at which each Ni is shifted to the site of the nearest 
neighbor in direction i. Eq.(8.1) produces a relaxation towards the equilibrium 
densities N;  q which is numerically stable provided - 2  < A < 0. The value of 
sets the kinematic viscosity ~ of the fluid. The equilibrium densities in (8.1) are 
given by 

6(1 + 2u-c~ + 4 ( u .  el) 2 - 2u 2) (8.2) 

where p is the mass density at site x 

p : , ( 8 . 3 )  

i 

ci the unit vector along direction i and u the velocity at site x defined through 
the momentum density per site 

pu = ~ c~B;~ (8.4) 
i 

The equilibrium distribution N~ q given in (8.2), is chosen to give mass and 
momentum conservation in the collision step. The flow will be forced into the 
direction of gravity g, which is pointing parallel to the walls of the pipe. For that  
purpose an additional step is added after the collision step which is defined by 

1 N" = N' q- ge~. (pg). Periodic boundary conditions are imposed in the direction 
of gravity in which the system has a length of L. In the perpendicular direction 
one has walls separated by W lattice spacings. The lattice orientation is such that  
one of the lattice directions is parallel to the walls at which no-slip conditions 
are used. At the beginning of the simulation the average density fi is fixed. It is 
an important  parameter  of the model which because mass is conserved. 

The relaxation parameter  )~ depends on the material properties including the 
kinematic and the bulk viscosities. Since an exact relation between )~ and the ma- 
terial constants is not known we will lean on some approximative arguments [95] 
tha t  predict a vanishing bulk viscosity. In that  case one can relate ~ directly to 
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the kinematic viscosity ~ through ,~ = -21-(0.25 + 2v) -1. We will consider that  
t, is a function of the local density p. 

A salient feature of granular media is the spontaneous formation of density 
waves, similar to traffic jams of the previous section. One possibility to explain 
the effect that  generates these waves is to assume that the viscosity depends on 
density. Within the kinetic gas theory of granular media[92 - 94] the relation 
y cx ( p  - p c ) l ~  3 has been derived. Since the above relation imposes a maximum 
density Pc it is rather difficult to implement it directly within the context of the 
LBM where the particles do not have an excluded volume. We therefore chose a 
piecewise linear relation of the form v = v m i ~  if p <_ Pt and v = v0 + 7(P - P) 
for p > Pt (see Fig. 16a). ~ is the average density and the threshold density pt is 
chosen to make ~, a positive continuous function of the density. We initialize the 
system by having the same values of the Ni on each site and then let the system 
evolve to its steady state. In the case of stable flows steady state is reached after 
2000 or 3000 time steps. In the case of the unstable flows that develop density 
waves, the simulations might take up to 20000 time steps to reach steady state. 
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Fig. 16. Left: Density dependence of the viscosity chosen in the simulations. The slope 
is 7 = 6.25 and the minimum viscosity is u,~;~ = 0.01. Right: Density in the center of 
the channel as a function of the position X along the channel for pt = 2.962, /5 = 3.0, 
g = 3.33 x 10 -5 and W = 64. The crosses are for L -- 256 and 60,000 iteration steps 
after the initial perturbation. The other curves correspond to L = 512 for 5000 (thick 
line), 60,000 (full line) and 60,025 (dashed line) iterations after the perturbation was 
applied (from Ref. [58]). 
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In order to generate density waves it is necessary to introduce a small per- 
turbat ion producing a 0.3% relative density difference on one line across the 
pipe, keeping the mass unchanged [58]. In Fig. 16b we see that  this initially 
very weak per turbat ion  dramatical ly builds up and develops into a density wave 
of over 10% density contrast.  For a pipe of same width but half the length, i.e. 
a different aspect ratio the wave has a less pronounced profile. This dependence 
on the aspect ratio is not to be confounded with finite size effects. 

Triggering the density wave by two spatially separated perturbations,  rather  
than  jus t  a single one, one can convince oneself tha t  the complex shape of the 
waves does not reflect the detailed way in which they were initiated. We also 
observe tha t  there seems to be no characteristic wavelength: Fig. 16b shows 
tha t  the waves have roughly the same shape and that  their size scales with the 
dimension of the channel. 

Q) 

:::J 

-M 

0 . 3  

0 . 2  

0 . 1  

/ 
(J. 04 

~ J  0.03 :::J 
J.J 
-M e.o2 
,--4 

0.01 t JJ-2%/ 
...... , | 

t ime ,ee 

0 ~ i , i i 
0 2 0 0  4 0 0  6 0 0  

time 

Fig. 17. Amplitude, i.e. difference between largest and smallest density, along the 
center of the pipe as a function of time measured in units of 100 iteration s*eps for 
L = 256 and otherwise the same parameters as in Fig. 16(right). The insert is a blow-up 
of the behavior at early times. (from Ref. [5S]) 

Fig. 17 shows this ampli tude as a function of t ime during 60,000 t ime steps. 
The insert shows the initial unstable phase leading to the rather  drastic increase 
of the ampli tude at the t ime 10,000. The first small increase in the density is due 
to the acceleration of the flow and can be understood from the velocity depen- 
dence in the pressure. The  small jump at after 2500 t ime steps results from the 
perturbat ion.  Before the instability is triggered at t ime 10,000, small oscillations 
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in the amplitude are observed. It was checked that  the amplitude indeed has its 
steady state value at time 60,000 by running the simulations ten times longer. 
The complicated relaxation towards the fully developed density wave indicates 
that  strong non-linear effects come into play rendering a linear stability analysis 
meaningless. It would be interesting to understand this behavior further. 

A Lattice Gas model [95] can be formulated such as to include local dissipa- 
tion of energy by introducing rest particles and special collision rules as done in 
Ref. [25]. Let us consider N particles located on the sites of a two dimensional 
triangular lattice which is L sites long and W sites wide. On each site there are 
seven Boolean variables i which are one or zero depending on whether there is a 
particle having velocity, vi(i = 0, 1 ,2 , . . .  6) or not. Here vi(i = 1, 2 , . . -6 )  are the 
nearest neighboring (NN) lattice vectors and v0 = 0 is the rest (zero velocity) 
state. So, each state can be either empty or occupied by a single particle and 
the number of particles per site has a maximal value of 7 and a minimal value 
of 0. The time evolution consists of a collision step and a propagation step. In 
the collision step particles change their velocities due to collisions and in the 
subsequent propagation step particles move in the directions of their velocities 
to the NN sites where they collide again except if there are rest particles. The 
system is updated in parallel. Only the specified collisions shown in Fig.18 can 
deviate the trajectories of particles. All collisions conserve mass and momentum. 

For two- and three body collisions, one has the probabilistic rules shown in 
Fig. 18a. The probability that  a configuration may take place is shown next to 
the configuration. If the parameter p is nonzero, energy is dissipated during the 
collision. 

Two moving particles colliding with a rest particle from opposite directions 
can stop each other in accordance with momentum conservation. But on each 
site only one rest particle is allowed. Therefore, the two particles stay at rest on 
the NN sites where they originally came from. However, on these sites already 
other rest particles may exist. To make things simple, one can still use the 
on-site collision as defined and temporarily allow more than one rest particle 
on a site during the collision. Immediately after the collision, the extra rest 
particles randomly hop to NN sites until they find a suitable site with no rest 
particle already sitting there. This is one way to incorporate the existence of a 
maximum density. Another possibility which is in fact easier to implement on 
parallel computers consists of introducing also rest particles on bonds [26]. The 
collision rules with rest particles are shown in Fig. 18b. 

The driving force of the flow is gravity. One simply incorporates its effect 
by giving with probability g to a rest particle a velocity along the direction of 
gravity and to any moving particle a change in velocity by a unit vector along 
gravity, if the resulting state is empty. (see Fig. 18@ 

The sites at the walls of the system only have two directions into which 
the particles can move. So, a particle colliding with the wall from one direction 
can be bounced back with probability b and specularly reflected into the other 
direction with probability 1 -  b as seen in Fig 18d. Ifb = 0, the walls are smooth 
(perfect no-slip condition). Otherwise, the walls have some roughness. 
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Fig. 18. (a) Probabilistic collision rules of the Lattice Gas of Ref. [25] (a) for two- 
and three body collisions, (b) for moving particles with a rest particle, (c) for gravity 
and (d) for a moving particle colliding with the wall. Thin arrows represent moving 
particles and small circles stand for rest particles. The number next to a configuration 
is the probability that the configuration takes place. Immediately after the collision, 
excessive rest particles on a site will randomly hop to the nearest neighboring sites 
until they find a suitable site with no rest particle already there. 

Let us first consider a system with periodic boundary  conditions in the direc- 
tion of gravity. The initial configuration of the system is set to be random in the 
sense tha t  every s tate  (except the rest state) of each site is randomly occupied 
according to a preassigned average density p. Fig. 19 shows the t ime evolution of 
the density in the pipe during the early stage for p = 0.1, g = 0.5, b = 0.5. Here 
the system has length L = 2200 and width W = 11 with average density p = 1.0 
The pipe was divided along the vertical direction into 220 bins with equal length 
of 10 and the number  nj of particles in the j t h  bin is counted, In Fig. 19 we 
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plot ni in the ith bin by a grayscale which is a linear in n~. The ni at a given 
time are plotted from bo t tom to top while the densities at different t ime steps 
are plotted from left to right as t ime increases. Gravity is from bo t tom to top 
(usually it is plotted in the opposite direction). We see that  initially the density 
is rather  uniform and gradually regions of high density are being formed out of 
the homogeneous system. A high density region may also die out and two high 
density regions may merge to form a single one. 

Fig. 19. Time evolution of the density nj{j = 1, 2, . . .  220} divided in 220 bins along 
the pipe of L = 2200, W -- 11 and p -- 1.0. Densities at a given time are plotted from 
bottom to top (direction of gravity) while densities at different time steps are plotted 
from left to right (direction of time). Every 80 time steps are shown during 40,000 time 
steps. The grayscale of each bin is a linear function of n~. Darker regions correspond 
to higher densities (from Ref. [25]). 

To obtain the shape of the density waves one can record the density field in 
steady state at each t ime step and shift their spatial coordinates such tha t  they 
overlap each other maximally. Since the density wave travels along the pipe, 
this shifted distance gives the average velocity. The maximal  overlap rule can be 
applied hierarchically to obtain a clearer shape of the density wave. 64 simulation 
runs are then averaged to give the final density profiles which are presented in 
Fig.20. We notice that  the density wave has a non-symmetr ic  shape and its wave 
front is sharper than the backside of the wave. The width of the wave scales with 
the system length (almost linearly) and the amplitude of the wave only increases 
a little bit as the system length increases. Note the similarities to the profiles 
obtained with the LBG in Fig. 16. 
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Fig. 20. Density as a function of position X along the pipe for various lengths L. 
The average has been made in the perpendicular direction. The model parameters are 
p = 1.0, p = 0.1, g = 0.5, b = 0.5 and W = 11 (from Ref. [25]). 

To characterize the density fluctuations in a certain region with time, let us 
calculate their power spectra.  The simulation is performed for very long t ime 
to obtain good statistics. One first subtracts  the mean value from the data  to 
remove the peak at f = 0 in the power spectra  and calculates the spectra  using 
a s tandard F F T  routine. The power is the square of the ampli tude of the Fourier 
Transformation of the t ime series. One representative power spec t rum is shown 
in Fig. 21 for systems with g = 0.5, b = 0.5, p = 1.0 and p = 0.8. We observe a 
sharp peak due to the contribution of the density wave observed in Fig. 19. The 
frequency of this peak corresponds to a wave velocity of Lf/To where L is the 
pipe length and To is the t ime interval between two recordings (here To = 10 t ime 
steps). The velocity measured in this way coincides with the direct measurement  
in real space. Apar t  f rom this peak one sees a background having a power law 
behavior where the spec t rum falls off as 1/ f  <~. The exponent a is found to be 
around 1.33 in Fig. 21. 

Both dissipation and the roughness of walls are necessary conditions for the 
presence of travelling density waves. If either p = 0 or b = 0 the spec t rum 
has white noise. Neither the exponent of the power-law decay nor the velocity 
of the density wave do depend on dissipation p within the error bars. In fact, 
using a Kolmogorov-Obukhov approach revised for space- intermit tent  systems, 
Bershadskii [97] proposed tha t  the exponent c~ = 1.33 found for this model [25] 
might be a universal value of 4/3 for scalar fluctuations convected by stochastic 
velocity fields in dissipative systems. Our numerical results for the present LGA 
model show tha t  the exponent does neither change with b nor with g but  the 
average density p does affect the exponent. For very low density (p <_ 0.8) the 
exponent is zero, i.e. the density fluctuation in the pipe is just  white noise since 
the interaction among the particles is so weak tha t  no collective motion can 
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Fig. 21. Power spectrum P(f) of the time series of the density fluctuation inside a 
region in a pipe of length L=220 and width W = l l .  The model parameters are p = 0.8, 
b = 0.5, g = 0.5, p = 1.0. The time series of the density fluctuation were recorded every 
10 time steps (from Ref. [25]). 

be formed. For average densities above 1.0, the exponent increases with p and 
becomes c~ ~ 1.86 for p = 2.0. Beyond p = 1.0 the model cannot be taken 
very seriously anymore since when the number of rest particles exceeds the total  
number of sites there is an upper limit on the dissipation rate p that  the system 
can bear. 

From the experimental  point of view, open boundary conditions are more 
realistic than the periodic boundary condition. Let us consider an open pipe 
which is initially empty. Particles are then injected from the upper boundary by 
a constant rate I and leave the system at the lower boundary without coming 
back. The injection rate is defined as follows. On each site of the upper  boundary 
one considers the states with velocities pointing into the system. If  such a state 
is not occupied, it can be filled with probabili ty I. A t ime-evolut ion of the 
density in the pipe is shown in Fig. 22. Densities at a given time are plotted 
from bo t tom to top while densities at different t ime are plotted from left to 
right. Gravity acts from bot tom to top. From this plot we observe that  high 
density regions can also be formed in open systems. They travel along the pipe 
until they leave the system from the lower border or they may die out during 
their propagation.  There are also more than one high density region at one time, 
in contrast to what  we observed in Fig. 19 in periodic systems. It seems that  all 
the density waves in Fig. 22 travel with a constant velocity. 

The density fluctuations have been measured [25] in a bin very close to the 
bo t tom of the pipe. Its power spect rum is found to follow 1/f noise only around 
a critical injection rate Ic = 0.52 and white noise otherwise. Fig. 23 shows three 
power spectra for different injection rates, I = Ic, [ < I~ and I > 1~. The power 
spect rum for I = I¢ falls off with a slope close to -1 in the log-log plot. The 
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Fig. 22. Time evolution of the density nj{j = 1, 2, .. .  100} in a pipe of L = 1000, 
W = 5 and I = 0.5. Other model parameters are p = 0.5, b = 0.5, g = 0.2. Densities 
at a given time are plotted from bottom to top (direction of gravity) while densities at 
different time steps are plotted from left to right (direction of time). Time goes from 
0 to 40,000 time steps. The gray scale of each bin is a linear function of n~. Darker 
regions correspond to higher densities (from Ref. [25]). 

exponent a for the power spectra  1/f  ~ is everywhere zero except around Ic. It  
seems tha t  the power spec t rum only has 1/f  noise at the critical point. The 
critical injection rate is found to be independent on the model parameters  and 
the system size. In fact one finds tha t  for I > Ic the system is clogging while 
for I < Ic particles no clogging occurs. It seems that  I~ is the maximal  injection 
rate tha t  the sys tem can sustain without clogging. 

9 .  A T h e r m o d y n a m i c  A p p r o a c h  t o  G r a n u l a r  M e d i a  

Subjected to an external forces granular materials locally perform rather statis- 
tical motions due to their mutual  collisions. For example on the loudspeaker the 
individual grains chaotically jump up and down forming a gas-like cloud of col- 
liding particles. Also inside a shear-cell [15, 40, 98] or flowing down an inclined 
chute [41, 84] in addition to a laminar flow with a well defined (average) velocity 
profile one has Brownian-like motion of the particles perpendicular to the flow 
direction. 

The above observations have inspired several authors to use thermodynamic  
concepts to describe granular media. On one hand a "granular tempera ture"  Tar 
has been defined [40, 99,100] as Tgr = ( v 2 ) - ( v )  2, i.e. proport ional  to the kinetic 
energy surplus with respect to the global motion. Strictly speaking this definition 
is thermodynamical ly  justified if an equiparti t ion theorem exists which is not the 
case for granular particles since they dissipate energy at collisions. On the other 
hand, Edwards and collaborators [23] have put forward another idea: Based on 



Granular Media 101 

10 '  . . . . . . . .  ] . . . . . . . .  [ . . . .  

(a) 

........................ ~-.. ,.2~....~ -~..'.~J:.~ ..'..~k_,.~. 

10 4 10 .3 10 "~' 

10 ° 

iO "l 

10 .2 

10 .3 

10 4 

10 .5 

10 ~ 
10 "5 

f 

I=0 .52  

_ _ . m  I - - - - 0 . 4 0  

. . . . . .  I = 0 . 5 8  

Fig. 23. Three typical power spectra for different injection rates I, I = I~ = 0.52 (top 
left), I < I~ (top right), I > Ic (bottom). The model parameters are p = 0.5, b = 0.5 
and g = 0.5. The two lower curves have been shifted vertically for clarity (from Ref. 
[25]). 

the important  observation that  granular materials do not conserve energy they 
proposed to consider the volume V to replace the internal energy in the usual 
thermodynamic  formalism and define a temperature-l ike quantity X = cOV/cOS 
which they called "compactivity". Although formally intact, this formalism is not 
easy to justify since in many  real situations like on the vibrating table or on an 
inclined plane, the volume is not well limited at large heights. While Edwards 's  
approach seems intuitively correct for dense packings and the definition of Tgr 
reasonable in the limit of strong internal motions or weak dissipation they fail 
in the corresponding opposite limit. 

Let us present in the following a thermodynamic approach to granular ma- 
terials [21] founded on similar principles as equilibrium thermodynamics  which 
incorporates at least partially the intuitive pictures of previous work: We shah 
consider subsystems sufficiently small to have no velocity or density gradients 
and for which the energy flux into them is such that  energy dissipation is homo- 
geneous. Energy conservation implies that  A I  = AEi~t + A D  where AD is the 
energy dissipated in a given t ime and A I  is the energy that  was pumped into 
the system while A D  was dissipated in order to maintain a steady state. The 
internal energy Ei~t is like in traditional thermodynamics  the sum of kinetic 
and potential  energy of all the degrees of freedom of the grains as elastic bodies 
(translation, rotation, elasticity, etc). One can now treat  the excess dissipated 
energy A59 = A D  - A I  in a similar way as the heat in usual thermodynamics.  
Since the dissipated energy is proportional to the sum of normal forces f~ that  
push the particles together during collision i one can express changes in 59 as 
659 = goSC where go is an internal pressure acting at collisions that  we can define 
as go = p ( f i / A i }  where Ai is the area of contact of collision i and the average is 
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performed over all collisions. We define the density p of collisions as the number 
of collisions per unit volume and unit time. The extensive conjugate quantity C 
has a geometrical interpretation and plays the role of a potential. It should in 
fact be proportional [21] to the overlap volume Vo~ that  one has for technical 
reasons in MD simulations which can be defined more precisely as the excluded 
volume that  would arise if the centers of mass of the particles follow the real 
trajectories but  one does not take into account the elasto-plastic deformation. 
The "equilibrium" - which is in fact a steady state driven by the energy flux - 
can be defined as the ensemble minimizing C and one can postulate in analogy 
to the second law of thermodynamics that  C should decrease for any change of 
state at constant internal energy Eint: z~C ~ 0 driven by the elastic repulsion 
between colliding (overlapping) grains. 

As in usual thermodynamics one carl now work in different ensembles. Natu- 
rally one would work at fixed p (granular ensemble) in which a granular potential 
G~ can be defined as G~ = Ei~t + pC and where at constant p the equilibrium is 

cq'/) _ . 5 C  given by the minimum of G~. The response function ~ defined as ~ - ~ - PS-d~ 
measures how much more energy can be dissipated if p is increased. On top of 
the granular ensemble one can build up the traditional body of thermodynamics 
as if the grains were a gas of particles interacting elastically. One can fix or free 
the number N of particles, define a "granular" temperature  T e and entropy S 
or impose to the system either an external volume V or an external pressure p. 
Special for granular media is that  one could also impose an external shear ~- or 
the dilatancy Vd [14, 15]. 

Considering a "state" given by the positions, orientations, linear and angu- 
lar velocities of the grains as rigid bodies the entropy is well-defined as noted 
already in Ref. [23]. A reasonable definition for a "granular" temperature  Tg 
would then be: 2r) = (OG~/OS)p which is, in fact, similar to the one defined 
previously [40,99,100] Experimentally p and Tg are independent control pa- 
rameters of the system: Tg is essentially driven by the amount AI of energy that  
is fed into the system per unit time. ~- depends mainly on the density of col- 

T g  

lisions and can therefore increase by fragmenting the grains into smaller pieces. 
(Note that  when a given grain is split into eight pieces, the cross section of each 
individual piece decreases by a factor four, so that  p will increase by two.) 

10. Sound Propagation in Granular Assemblies 

Recent experimental work shows that sound propagation in sand exhibits very 
complex behavior. Liu and Nagel [13] reported fluctuations in the acceleration- 
amplitudes measured at several points in the system. The spectrum of the time 
evolution of these amplitudes revealed a power law. They  also measured the fre- 
quency response for their systems. The frequency response seems to be charac- 
teristic for the system, a slight rearrangement of the beads produces a completely 
different behavior. Leibig [101] calculated the frequency response for a system 
consisting of spherical particles interacting via linear springs on a square lattice. 
These numerical results are in agreement with the experimental ones [13]. 
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monodisperse polydisperse 

Fig. 24. Wave produced by a single compressional pulse of amplitude 0.01 d on the 
left wall. The grey scales code the kinetic energy of the particles. The left figure shows 
the monodisperse case and the right figure the polydisperse case. Note the secondary 
wave front clearly seen in the monodisperse case travelling (due to its lower amplitude) 
much slower behind the primary wave front (from Ref. [64]). 

There have been predictions about the depth dependence of the sound veloc- 
ity. Goddard made calculations [61] showing that the sound velocity v~ depends 
on pressure p like vc oc p~ if the elastic interaction is Hertz's contact law. For 
high pressures this relation has been verified experimentally (cited in Ref. [61]). 

For low pressures, however, vc o~ p¼ has been found experimentally. Both cases 
imply that  the wave velocity approaches zero near the surface (p = 0), so that  
a vertical wave front will bend up, becoming increasingly horizontal which is 
known as the "mirage effect" [2, 13]. 

Melin [64] studied a two dimensional packing of grains confined within a 
rectangular box under gravity. The centers of the particles are situated on a 
triangular lattice. A sufficiently small perturbation (e.g. e weak polydispersity 
or a small vibration) can maintain the topology of this packing over regions 
much larger than the size of the container. So, since the neighbors are fixed 
throughout the entire simulation the time consuming part of determining the 
possible interaction partners can be avoided. This triangular lattice can be easily 
mapped onto a square lattice. 

Melin [64] considers a system consisting of 256 * 256 monodisperse spheres 
under gravity and puts on the left wall a step shaped excitation, i.e. all spheres 
at this walt are instantaneously moved a small distance to the right. On the 



104 H.J. Herrmann 

left part  of Fig. 24 one can indeed recognize a rather weak dependence of the 
propagat ion velocity on depth. It  is clear see that  the relation v¢ o¢ h} cannot be 
valid in this case, because the wave near the surface has travelled a considerable 
distance. The reason for this behavior is tha t  at the surface the particles touch 
each other and will exert some force on each other for any small perturbat ion.  

This behavior can be quantified by measuring the position of the wavefront 
for every t ime step which can be chosen as the position of the particles which 
having the largest total  energy at a given height. As one can clearly see in Fig. 25 
the anticipated depth dependence of Vc o< h} does not hold true for the simu- 
lated cases. The depth dependence becomes stronger with gravity. Moreover the 
propagation velocity of the wave front depends very much upon the amplitude 
of the initial excitation. Only for high amplitudes the depth dependence of the 
sound velocity becomes amplitude independent. 
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Fig. 25. Depth dependence of the sound velocity for two different values of gravity 
approximately 7.8 msec after the pulse. The third curve is for a system of only 256,128 
particles (i.e. half the height). It shows, that the boundary at the bottom only has a 
small effect. For better visualization this last curve has been shifted downwards by 0.25 
m/sec. (from Ref. [64]). 

It is interesting to note that  the wave speed decreases with time. The ex- 
planation for this can be found in Fig. 24 where one can see tha t  although the 
wavefront is very sharp the particles in the region behind the wavefront still have 
very much kinetic energy left. This means tha t  the total  energy in the wavefront 
decreases with time since some of energy is lost in the region it has traversed, 
Some of the kinetic energy is also lost due to its dissipation. 

Introducing a polydispersity of AAr~a~ = ±0.01A where A = d ~ smears the 
wave front out but otherwise no qualitative difference in the general behavior 
is visible (see right part  of Fig. 24). The reason for this can be seen in Fig. 26. 
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Due to the polydispersity some of the horizontal bonds are already closed in the 
equilibrated state. Any excitation will travel faster along these closed bonds. 

u. - .~ .~ : ' : - '# - ' - - : . - ' :~"  :-. : : ' ~v :~ : ' : ' : . . ' , ' . , . : ' : . ' : . : . ~ : i , . , ~x -2 : :~ . . . ' . : •~ ' , , . : , ,  : ' .~ . ,  .~.a;'?:~:':;.:#:.:.:'?.::~3:i" :K:.:.7-.'i:.: 
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Fig. 26. Contact network for an equilibrated 256. 256 packing of spheres, the thickness 
of the lines is a measure for the stresses in the bonds. The particles have a polydispersity 
of 1% in the areas (from Ref. [64]). 

Instead of looking at a single excitation, one can look at the behavior of a 
continuously excited system. Experimentally [13,102] it is possible to measure 
the acceleration amplitudes and phases of a few test particles. The behavior 
turns out to be quite complex as seen in Pig. 27. The system has been driven 
sinusoidally at a frequency of 100Hz with an acceleration amplitude of 0.5g. 
The particles forming the left wall are the sound source. Both figures have been 
taken 256 cycles (2.56 sec) after the beginning of the excitation. Fig. 27 shows 
the phases in x-direction for the monodisperse case. 

One can see that  the resulting patterns are far from regular. Note the very 
sharp phase shift on the right side of the system having an angle of 600 . These 
sharp phase shifts appear quite often. They are due to the confinement of the 
system in the rigid box [101]. 
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Fig. 27. The acceleration phases in x-direction for the monodisperse system 2,56 sec 
after starting the excitation (from a e f  [64]). 

11. P last ic  D e f o r m a t i o n  and Shear Bands  in D e n s e  
Packings  

The plastic yield criterion of granular material  is quite different from that  of met-  
als because on one hand it linearly depends on pressure (Mohr-Coulomb)[103] 
and on the other hand because under shear a dilatation along an angle ~b is 
observed, The onset of plasticity is well described by a relation [103]: 

= ~ + t a n ( ~ ) .  ~ (11 .1 )  

where T and ~r~ are the shear and the normal stresses and the material  constants 
and c are the "friction angle" and the cohesion force, respectively. In general, 

the plasticity is "non-associate ' ,  i.e. the angle of dilatancy '~ under shear is 
different f rom ~. 

Using an explicit Lagrangian technique similar to FLAC [104] an elasto- 
plastic rectangular medium was simulated in Ref. [65]. A compressive velocity 
in the horizontal direction was imposed. Besides the above mentioned material  
constants c, ~ and ~ one can also change the elastic moduli or Lam~ constants 
and #. The simulations are performed on a grid which in its undeformed state is 
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a square lattice of unit lattice constant with an additional diagonal giving thus a 
triangulation. The numerical technique has an intrinsic t ime step At. Measured 
in these units a compressional velocity of 10 .5  is imposed per grid element. 

2 0 0  x 2 0 0  

Fig. 28. Snapshot of the shear strain rate for systems of different size: (a) 50x50, (b) 
100x100, (c) 200x200, (d) 300 x 300 for ¢ = 40, ~ = 0, c --- 0, )~ = #, Poisson ratio 
, = o.25 a n d  R = 10 . 9  ( f r o m  Ref .  [65]). 

In Fig. 28 we see snapshots from the evolution of the systems with differ- 
ent mesh (lattice) sizes L but the same physical parameters.  These results are 
shown after such a long time that  the overall number of shear bands does not 
change with t ime (however the positions and activities of single shear zones is 
not constant).  
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The local changes of the second invariant of the strain rate: e = ~II determine 
the grey scale in Fig. 28. This means that  the dark regions correspond to strong 
changes either in the direction or in the magnitude of the motion of the material. 
The white regions are elastic. We see that  spontaneously shear bands are formed 
in which the plastic deformation occurs. These bands form an angle 45 ° - ¢ /2  < 
0 < ( 4 5 ° - ¢ / 2 )  with respect to the horizontal which is consistent with bifurcation 
theory [105,106]. They have varying length and their position changes in time. 
Since our initial setup was completely homogeneous the random positions of 
the shear bands are due to minute effects in the round-off of the floating point 
numbers in the computer.  

It has been observed that  the pattern formed by the shear bands essentially 
only depends on the dimensionless parameter R = pc/pVb¢ where p is the confin- 
ing pressure, c the velocity of sound, # the Lamg constant and Vbc the externally 
imposed velocity of the boundary. This can be checked numerically by varying p, 
the elastic modulus and the size of the sample. With decreasing R shear bands 
are located closer to each other. 

108 / . . . . . . . .  I . . . . . . . .  
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Fig. 29. Log-log plot of the length distribution for a system of size 300 x 300 for the 
same physical parameters as in Fig. 28. (from Ref. [65]) 

The scale invariance of the shear bands can be analyzed by changing the 
lattice size L or equivalently the resolution of the system. The geometrical fractal 
dimension of the shear band network is do = 1.82 + 0.1 for R = 10 -9. The same 
result is obtained from the box-counting analysis of a single picture with the 
highest resolution [65]. 

The spontaneous appearance of a fractal set of shear bands starting out 
from a rather homogeneous situation suggests the existence of self-organized 
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criticality [54]. Each shear band might be seen as a single internal avalanche on 
which the system can release stresses through larger displacements. Let us also 
look at the distribution of the length of shear bands. Numerically the length of 
the bands can be obtained using a burning algorithm [107]. In Fig. 29 we see a 
log-log plot of this distribution. For lengths smaller than the width of the bands 
the data are not useful. After that  we see a power-law decay with an exponent 
of r = 2.1 + 0.2. This value is in reasonable agreement with length distributions 
measured on sand [62]. 

There is some resemblance between fracture of rocks and shear bands in gran- 
ular media. It is, however, important to point out a crucial difference between 
the two: for cracks the most stressed regions are at the tips while the shear bands 
have their strongest strain rates in the center. 

1 2 .  D i s c u s s i o n  

With a rather simple description of a granular medium as an ensemble of inelas- 
tic spherical particles with shear friction we have shown that  many interesting 
rheological properties can be reproduced. Various types of convection can occur 
on a vibrating plate which are strongly influenced by hindrances on the wall. 
Density waves appear during the flow through a pipe which can be explained 
as a consequence of dissipation: Due to the inelastic collisions between parti- 
cles (also cars) an instability [91, 92] tends to form clusters of high density (dark 
horizontal stripes in Pig. 12). These clusters self-organize into a critical state 
giving a power law spectrum. As in classical traffic models the density depen- 
dence of the flux generates kinematic waves (dark tilted lines in Fig. 12). The 
density dependence of the viscosity as predicted by kinetic gas theory builds 
up waves of low density (light horizontal lines in Fig. 12). We see that  simply 
introducing dissipation to a gas of particles produces several phenomena, that  
occur simultaneously in granular materials. 

It is not always straightforward to determine the material constants corre- 
sponding to some parameters of the model, like % and %, and so a quantitative 
comparison with experiments in many cases still involves fitting some param- 
eters. More realistic models including static and dynamic friction, rotations of 
particles, variations in the particle shapes, etc increase the number of parame- 
ters but are needed to establish a closer contact to reality. The most important  
restriction of the simulations presented here is that most have been performed 
in two dimensions. Three dimensional simulations must also be performed since 
many phenomena seem to be due to steric effects. The technique we presented 
can of course also be applied to three dimensions. It is just the available com- 
puter time that  limits at present our possibilities to extend simulations to three 
dimensional systems of numerically reliable sizes. 

The analogy of molecular systems for which Molecular Dynamics simulations 
were originally conceived gave us the incentive to describe within a thermody- 
namic formalism the fluctuations arising from the constant flux and dissipation 
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of energy that  drives a granular material 's kinematic behavior. By separating the 
dissipative degree's of freedom (friction and plasticity) from the conservative ones 
(translation, rotation, elasticity) we define a "granular ensemble" coupled to a 
"dissipate bath" which is in fact the one in which experimental and numerical 
measurements are usually performed. 

When the density of the granular medium exceeds the characteristic Reynolds 
dilatancy it behaves like a solid but retains very particular properties. One is the 
non-linear acoustics due to the complicated network on which the stresses are 
t ransmit ted and another is the Hertzian contact law. As a consequence the sound 
velocity depends on pressure and amplitude and one finds secondary waves of 
lower velocity. Another effect is the non-associated plasticity due to the local 
effects of dilatancy during large scale deformations. Its consequence is the local- 
ization of the shear on planes which at least within a certain range form a fractal 
network. 

I thank E. Flekkoy, J. Gallas, J. Lee, S. Melin, K. Nagel, G. Peng, A. Poliakov, 
T. PSschel, G. Ristow and S. Sokotowski were my collaborators on the results 
presented in this course. 
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