
http://www.chaos.gatech.edu/ccis2019/sc1/

Go to the following link

GPU Computing Using WebGL -Day 1
Tuesday, March 19, 2019 8:09 AM

 ccis2019 short course 1 Page 1

http://www.chaos.gatech.edu/ccis2019/sc1/

We start by entering project 01:

Let's start from the index.html file. To run each program you need to open this file
using FireFox. Today, we are not going to change it. But, let's have a look at it ;-)

 ccis2019 short course 1 Page 2

Now, let's have a look at the main.js file:

Now, let's edit the vertex shader (vertShader.vert). Since coordinates of our
triangle fit on the screen, we can do a one to one map:

 ccis2019 short course 1 Page 3

Then, let's design our fragment shader (compShader.frag) to color our geometry:

Now, if we run our program by opening it in FireFox we should see the following:

Now, let’s copy the content of project 01-traingle, to 02-rectangle and continue…

To draw a rectangle, we need to add one more triangle to our previous example:

 ccis2019 short course 1 Page 4

So, let’s add it to the list of our vertices in main.js and edit the file accordingly.

Now, if you open index.html in your FireFox browser you should see:

Let's now modify the rectangle to a unit rectangle which can be more useful. Let's
go back to main.js and edit accordingly:

And now the program will plot:

 ccis2019 short course 1 Page 5

Now, we can do a simple mapping in our vertex shader (vertShader.vert) to map
our geometry to (-1,-1,0) on the bottom left corner and (1,1,0) on the top right
corner:

We can also write the above shader in a compact form:

The result of running this program is drawing the following shape:

The default geometry in Abubu.js is the unit rectangle that we just defined and
used. Hence, if we don’t provide any geometry to the solver, the solver will

 ccis2019 short course 1 Page 6

Now, let's copy the content of project 02 into the directory starting with 03 to
start a new project.

Other than mapping vertex positions, vertex shader can calculate interpolated
value for each pixel on the screen. For example if we can calculate the
interpolated the position of each pixel in our physical world. Let's edit the vertex
shader (vertShader.vert).

Now, let's bring our interpolated values into our fragment shader
(compShader.frag) and use it:

Now, if we run the program we will get the following:

Now, let's copy the content of project 03 into the 04 project. From, now on we

used. Hence, if we don’t provide any geometry to the solver, the solver will
assume a unit rectangle (two triangles) geometry.

 ccis2019 short course 1 Page 7

Now, let's copy the content of project 03 into the 04 project. From, now on we
will just use the vertex shader that we have just developed and keep reusing it.

All the magic will happen in the fragment shader. So, let's make another change in
our fragment shader (compShader.frag).

Now, if we run the program (by now you should know by opening index.html in
FireFox) we should get the following result:

Quick question: is the graphics card drawing a circle?
.
.
.
.
.
.
Answer: NO! The graphics card is drawing two rectangles and our coloring recipe
in the fragment shader colors the pixel in a way that a circle is formed!

 ccis2019 short course 1 Page 8

